

LAPORAN MONITORING

Program OTAK JAWARA

Orang Tua Asuh Karang di Laut Utara Jakarta dan Jawa Barat

Tahun 2025

Di Wilayah Kerja PT PERTAMINA HULU ENERGI ONWJ

Tim Penyusun

Hefni Effendi Wazir Mawardi Budhi Hascaryo Iskandar Panji Nugraha Darmawangsa Luluk Dwi Wulan Handayani Pungki Ari Wibowo Muhammad Isnan Zuhri

PT Pertamina Hulu Energi Offshore North West Java

RDTX Square lantai 27 dan 15 Jalan Prof. Dr. Satrio No. 164, Jakarta Selatan 12930 Telp. (021) 57954000

KATA PENGANTAR

PT Pertamina Hulu Energi Offshore North West Java (PHE ONWJ), menyadari kegiatan operasi yang dilakukannya berpotensi menimbulkan dampak berupa gangguan habitat asli beserta ekosistem di dalamnya, sehingga memengaruhi keberlangsungan hidup fauna maupun flora yang ada di sekitarnya. Untuk itu, PHE ONWJ berkomitmen meminimalkan dampak yang ditimbulkan dari kegiatan operasinya dengan melakukan upaya pencegahan, minimalisasi dan mitigasi risiko terhadap keanekaragaman hayati sepanjang siklus bisnis perusahaan, tanggung jawab terhadap tata guna lahan serta merencanakan dan memodifikasi desain, konstruksi dan praktik operasi untuk melindungi spesies fauna dan flora tertentu yang endemik atau dilindungi. Salah satu bentuk komitmen PHE ONWJ dalam melestarikan keanekaragaman hayati adalah melalui restorasi dan monitoring ekosistem terumbu karang.

Program restorasi dan monitoring ekosistem terumbu karang ini dicetuskan karena terumbu karang merupakan salah satu komponen ekosistem pesisir yang memegang peranan penting baik dalam memelihara produktivitas perairan pesisir maupun dalam menunjang kehidupan penduduk di sekitar wilayah tersebut. Terumbu karang (*coral reefs*) merupakan organisme yang hidup di dasar laut daerah tropis dan dibangun oleh biota laut penghasil kapur khususnya jenis-jenis karang dan alga penghasil kapur (CaCO3). Ekosistem terumbu karang menjadi tempat memijah, pengasuhan dan mencari makan dari kebanyakan ikan. Oleh karena itu, secara otomatis produksi ikan di daerah terumbu karang menjadi tinggi. Terumbu karang juga merupakan habitat bagi banyak spesies laut. Selain itu juga dapat berfungsi sebagai pelindung pantai dari erosi.

Penyusunan Laporan Monitoring Program Orang Tua Asuh Karang di Laut Utara Jakarta dan Jawa Barat oleh PHE ONWJ di Gugus Karang Sendulang, Kabupaten Karawang dan Gugus Karang Pulau Biawak, Kabupaten Indramayu Tahun 2025 ini ditujukan untuk memetakan dan menginventarisasi kondisi eksisting ekosistem terumbu karang di sekitar wilayah kerja OHE ONWJ. Dengan adanya dokumen ini diharapkan dapat menjadi acuan dan rekomendasi dalam melakukan kegiatan konservasi keanekaragaman hayati dan berbagai upaya pelestarian lingkungan serta kebijakan-kebijakan lain oleh PT PHE ONWJ sehingga memberikan dampak positif.

Pada kesempatan ini, PHE ONWJ menghaturkan banyak terima kasih kepada semua pihak yang telah berkontribusi dalam penyusunan Laporan Monitoring Program Orang Tua Asuh Karang di Laut Utara Jakarta dan Jawa Barat oleh PHE ONWJ di Gugus Karang Sendulang, Kabupaten Karawang dan Gugus Karang Pulau Biawak, Kabupaten Indramayu Tahun 2025 ini. Semoga laporan ini dapat memberikan ilustrasi tentang komitmen dan usaha PHE ONWJ yang berkelanjutan dalam pengelolaan lingkungan.

Jakarta, Agustus 2025

PHE ONWJ

DAFTAR ISI

	Halaman
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR TABEL	ix
DAFTAR GAMBAR	xi
PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Tujuan	3
METODOLOGI	4
2.1. Lokasi Kajian	4
2.2. Parameter yang Dikaji	6
2.2.1. Metode Pengumpulan Data	6
2.2.1.1. Prosedur Survei Terumbu Karang	6
2.2.1.2. Prosedur Survei Ikan Karang dan Biota Asosiasi Karang Lainnya .	9
2.3. Metode Analisis Data	11
2.3.1. Ikan Karang dan Biota Asosiasi Karang Lainnya	11
2.3.2.1. Kelimpahan	11
2.3.2.2. Indeks Keanekaragaman	11
2.3.2.3. Indeks Keseragaman	12
2.3.2.4. Indeks Dominansi	13
2.3.2.5. Kelompok Fungsi Ikan Karang	13
HASIL STUDI	14
3.1. OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang	
Biawak	
3.1.1. Terumbu Karang Hasil Transplantasi di Gugus Karang Pulau Biawak	
3.1.1.1 Areal Transplantasi di Gugus Karang Pulau Biawak	
3.1.1.2.1. Life Form Karang Transplan di Gugus Karang Pulau Biav	
3.1.1.2.2. Genus Karang Transplan di Gugus Karang Pulau Biawak	
3.1.1.3. Kecenderungan Karang Hasil Transplantasi di Gugus Karang Pul	au Biawak 17

		3.1.1.3.1		~		·='	Gugus Karang	
		3.1.1.3.2	. Kecenderun Transplantas	si				10
		3.1.1.3.3	•	•			i Gugus Karan	
			Pulau Biawa	k	•••••			19
3.1.2		_	•	_	•		ugus Karang P	
	3.1.2.1.	-		•		•	Gugus Karang	
	3.1.2.2.		ahan (Kompo antasi di Gug		•	9	di Areal	21
	3.1.2.3.		_		_		ansplantasi di	_
	3.1.2.4.		Keseragaman antasi di Gug				ng di Areal	23
	3.1.2.5.			•	•		plantasi di Gu	_
		3.1.2.5.1	Individu) Ika	n Karang di	i Areal Trar	nsplantasi di	posisi Jumlah i Gugus Karan	g
		3.1.2.5.2	Ikan Karang	di Areal Tra	ansplantasi	di Gugus K	gaman Jenis (arang Pulau B	iawak
3.1.3		_	=		_	=	Transplantasi d	
	3.1.3.1.						l Transplantas	
	3.1.3.2.	-	sisi Jumlah In antasi di Gug			•	nya di Areal	26
	3.1.3.3.						ainnya di Area	
	3.1.3.4.						siasi Karang L	•
	3.1.3.5.			-		_	nya pada Area	

3.1.3.5.2. Status dan Kecenderungan Kelimpahan (Komposi Individu) Biota Asosiasi Karang Lainnya pada Area di Gugus Karang Pulau Biawak	ll Transplantasi
3.1.3.5.2. Status dan Kecenderungan Indeks Keanekaragam Biota Asosiasi Karang Lainnya pada Areal Transpla Karang Pulau Biawak	antasi di Gugus
3.2. OTAK JAWARA dengan menerapkan inovasi Modul Paranje di Gugus	_
Sendulang	
3.2.1.1 Areal Transplantasi di Gugus Karang Sendulang	
3.2.1.2. Life Form dan Genus Karang Transplan di Gugus Karang S	
3.2.1.2.1 Life Form Karang Transplan di Gugus Karang Send	_
3.2.1.2.2. Genus Karang Transplan di Gugus Karang Sendul	•
3.2.1.3. Media Transplantasi di Gugus Karang Sendulang	J
3.2.1.4. Kecenderungan Hasil Transplantasi di Gugus Karang Send	
3.2.1.4.1. Kecenderungan Total Media Transplan di Areal Tr Gugus Karang Sendulang	ransplantasi di
3.1.1.3.2. Kecenderungan Total Fragmen Karang pada Prog Transplantasi di Gugus Karang Sendulang	
3.2.1.4.1. Kecenderungan Luasan Areal Transplantasi di Gug Sendulang	•
3.2.2. Keanekaragaman Hayati Ikan Karang di Gugus Karang Sendulang	
3.2.2.1. Komposisi Jenis Ikan Karang di Gugus Karang Sendulang	37
3.2.2.2. Komposisi Jumlah Individu Ikan Karang di Gugus Karang S	
3.2.2.3. Indeks Keanekaragaman Jenis Ikan Karang di Gugus Karar	ng Sendulang 40
3.2.2.4. Indeks Keseragaman dan Indeks Dominansi Ikan Karang d Transplantasi di Gugus Karang Sendulang	
3.2.2.5. Status dan Kecenderungan Ikan Karang di Gugus Karang S	Sendulang 41
3.2.2.5.1. Status dan Kecenderungan Kelimpahan (Komposi Individu) Ikan Karang di Areal Transplantasi di Gug Sendulang	gus Karang
3.2.2.5.2. Status dan Kecenderungan indeks Keanekaragam Ikan Karang di Areal Transplantasi di Gugus Karan	
3.2.3. Keanekaragaman Hayati Biota Asosiasi Karang Lainnya di Areal Trans	splantasi di

3.3.2. Ke. Co. 3.3 3.3 3.3 3.3 KESIMPULAI	ral Box di Gugus Karang Sendulang
3.3.2. Ker Cor 3.3 3.3 3.3	 2.2.1. Komposisi Jenis Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang
3.3.2. Ke- Coi 3.3 3.3	 2.2.1. Komposisi Jenis Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang
3.3.2. Ke. Co. 3.3	2.2.1. Komposisi Jenis Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang
3.3.2. Ke Co	2.2.1. Komposisi Jenis Ikan Karang pada Transplantasi Karang dengan Metode
3.3.2. Ke	ral Box di Gugus Karang Sendulang4
5.5	anekaragaman Hayati Ikan Karang pada Transplantasi Karang dengan Metode
3 3	.1.3. Media Transplantasi Metode Coral Box di Gugus Karang Sendulang 4
3.3	.1.2. Life Form dan Genus Karang Transplan Metode Coral Box di Gugus Karang Sendulang4
3.3	.1.1 Areal Transplantasi Metode Coral Box di Gugus Karang Sendulang 4
3.3.1. Tei	rumbu Karang Hasil Transplantasi inovasi Coral Box4
	AWARA dengan menerapkan inovasi Coral Box di Gugus Karang Sendulang4
	3.2.2.5.2. Status dan Kecenderungan indeks Keanekaragaman Jenis (H') Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang4
	3.2.2.5.1. Status dan Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang4
3.2	a.3.5. Status dan Kecenderungan Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang4
3.2	a.3.4. Indeks Keseragaman dan Indeks Dominansi Biota Asosiasi Karang Lainny di Areal Transplantasi di Gugus Karang Sendulang4
	.2.3. Indeks Keanekaragaman Jenis Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang4
3.2	Transplantasi di Gugus Karang Sendulang4
	.3.2. Komposisi Jumlah Individu Biota Asosiasi Karang Lainnya di Areal

4.2. Program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang	52
4.3. Program OTAK JAWARA dengan menerapkan inovasi coral box di Gugus Karang	
Sendulang	53
DAFTAR PUSTAKA	54

DAFTAR TABEL

Tabel	Halaman
Tabel 1.	Daftar Lokasi Montioring Keanekaragaman Hayati Ekosistem Terumbu Karang Hasil Transplantasi
Tabel 2.	Kategori Bentuk Pertumbuhan Substrat Terumbu Karang
Tabel 3.	Kriteria Penilaian Tingkat Keanekaragaman Berdasarkan Nilai Indeks Diversitas Shannon-Wiener (H')12
Tabel 4.	Kriteria Penilaian Indeks Keseragaman12
Tabel 5.	Life Form Yang Ditransplan Selama Program Otak Jawara dengan Menerapkan Inovasi Modul Honai Berlangsung15
Tabel 6.	Jumlah Fragmen dari Masing-Masing Genus yang Ditransplan Selama Program Berlangsung16
Tabel 7.	Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak
Tabel 8.	Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Pulau Biawak21
Tabel 9.	Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak22
Tabel 10	Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak pada Tahun 202523
Tabel 11	. Komposisi Jumlah Spesies Biota Asosiasi Karang Lainnya di Lokasi Transplantasi Karang di Gugus Karang Pulau Biawak25
Tabel 12	. Komposisi Jumlah Individu Biota Asosiasi Karang Lainnya yang Dijumpai di Lokasi Transplantasi di Gugus Karang Pulau Biawak26
Tabel 13	. Indeks Keanekaragaman Biota Asosiasi Lain di Lokasi Transplantasi di Gugus Karang Pulau Biawak26
Tabel 14	. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak27
Tabel 15	. Areal Transplantasi program OTAK JAWARA di Gugus Karang Sendulang 30
Tabel 16	. <i>Life Form</i> yang Ditransplan Selama Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje Berlangsung30
Tabel 17	. Jumlah Fragmen Dari Masing-Masing Genus yang Ditransplan Selama Program Berlangsung3

Tabel 18	Data Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang pada Tahun 202533
Tabel 19	. Jumlah Media Transplantasi pada Program OTAK JAWARA di Gugus Karang Sendulang34
Tabel 20	Jumlah Fragmen yang Ditransplan di Gugus Karang Sendulang
Tabel 21	Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang36
Tabel 22	. Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang37
Tabel 23	. Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Sendulang39
Tabel 24	. Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang40
Tabel 25	. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang41
Tabel 26	. Komposisi Jumlah Spesies Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Sendulang43
Tabel 27	. Komposisi Jumlah Individu Biota Asosiasi Lain yang dijumpai di lokasi transplantasi di Gugus Karang Sendulang44
Tabel 28	. Indeks Keanekaragaman Biota Asosiasi Lain di Lokasi Transplantasi di Gugus Karang Sendulang45
Tabel 29	. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang45
Tabel 30	. <i>Life Form</i> dan Genus yang Ditransplan Selama Program OTAK JAWARA dengan Menerapkan Inovasi <i>coral box</i> Berlangsung48
Tabel 31	. Data Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang dengan Metode <i>Coral Box</i> pada Tahun 202548
Tabel 32	. Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode <i>Coral Box</i>
Tabel 33	. Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode <i>Coral Box</i> 50
Tabel 34	. Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode <i>Coral Box</i> 51
Tabel 35	Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang dengan Metode <i>Coral Box</i> 51

DAFTAR GAMBAR

Gambar	Halaman
Gambar 1.	Peta Lokasi Monitoring Kegiatan Transplantasi dan Keanekaragaman Hayati Ekosistem Terumbu Karang5
Gambar 2.	Pengambilan Data Menggunakan Metode LIT6
Gambar 3.	Proses Pengambilan Data Menggunakan Metode LIT7
Gambar 4.	Pendataan Kondisi Habitat Terumbu Karang Dengan Metode <i>Manta Tow</i> 8
Gambar 5.	Kategori Persentase Tutupan Karang (<i>English et al.</i> , 1994)9
Gambar 6.	Ilustrasi Pengambilan Data Terumbu Karang (a), dan Ikan Karang Serta Biota Asosiasi Karang Lainnya (b)10
Gambar 7.	Pengamatan Ikan Karang dan Biota Asoisasi Karang Lainnya11
Gambar 8.	Life Form Karang yang Ditransplan di Modul Honai
Gambar 9.	Acropora yang Tumbuh Menjulang di Modul Honai Hasil Kegiatan Transplantasi Terumbu Karang di Gugus Karang Pulau Biawak16
Gambar 10	. Transplantasi Genus Lainnya pada Modul Honai17
Gambar 11	. Kecenderungan Total Luas Media Transplantasi pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 – 202518
Gambar 12	. Kecenderungan Fragmen yang ditransplan pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 – 202519
Gambar 13	. Kecenderungan Total Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 - 202519
Gambar 14	. Beberapa Jenis Ikan Karang yang Ditemukan di Sekitar Lokasi Transplantasi di Gugus Pulau Biawak21

Gambar 15.	. Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Ikan Karang (ekor) di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Tahun 2021-2025 2	4
Gambar 16.	. Kecenderungan Indeks Keanekaragaman (H') Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2021-2025 2	4
Gambar 17.	. Biota Asosiasi Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Pulau Biawak2	
Gambar 18.	. Kecenderungan Indeks Keanekaragaman (H') Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2021- 20252	8
Gambar 19	. Kecenderungan Indeks Keanekaragaman (H′) Biota Asosiasi Karang Lainnya pada Areal Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2020-20242	8
Gambar 20.	. Transplantasi Terumbu Karang dengan Metode Penempelan Fragmen pada Modul Paranje, dan <i>Line Transplan,</i> di Gugus Karang Sendulang	9
Gambar 21.	. <i>Life Form</i> Karang Yang Ditransplan di Modul Paranje3	1
Gambar 22.	. Acropora yang Tumbuh di Modul Paranje Hasil Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang3	
Gambar 23.	. Genus Lainnya yang Ditransplan di Modul Paranje3	3
Gambar 24.	. Tahapan Kegiatan Transplantasi dengan Metode Penempelan Fragmen pada Paranje	4
Gambar 25	. Kecenderungan Total Media Transplantasi pada Program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang dari Periode Tahun 2022 – 2025	5
Gambar 26.	. Kecenderungan Fragmen yang ditransplan pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang pada Periode Tahun 2022 – 20253	
Gambar 27	. Kecenderungan Total Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang pada Tahun 2022 - 20253	
Gambar 28.	. Beberapa Jenis Ikan Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang3	9
Gambar 29.	. Kawanan ikan ekor kuning (<i>Caesio cuning</i>) yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang4	0
Gambar 30	. Kecenderungan Kelimpahan Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Periode Tahun 2022-20254	2

Gambar 31	. Kecenderungan Indeks Keanekaragaman (H') Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2022-202542
Gambar 32	. Biota Asosiasi Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang44
Gambar 33	. Kecenderungan Kelimpahan Biota Asosiasi Karang Lainnya dari Periode Tahun 2022 hingga Tahun 202546
Gambar 34	. Kecenderungan Indeks Keanekaragaman (H') Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Sendulang pada Periode Tahun 2022-2025 47
Gambar 35.	. Transplantasi Terumbu Karang dengan inovasi <i>coral box</i> di Gugus Karang Sendulang47
Gambar 36	. Life Form Karang Yang Ditransplan di Modul Paranje48
Gambar 37	. Tahapan Kegiatan Transplantasi dengan Metode Inovasi <i>Coral Box</i> 49

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Terumbu karang terbentuk dari endapan masif terutama CaCO₃ yang dihasilkan oleh organisme karang (filum Scnederia, kelas Anthozoa, ordo Madreporaria Scleractinia), algae berkapur dan organisme-organisme lain yang mengeluarkan CaCO₃ (Nybakken, 1988). Terumbu karang merupakan ekosistem yang khas terdapat di daerah tropis. Meskipun terumbu karang dapat ditemukan di seluruh perairan laut dunia, namun hanya dapat berkembang dengan baik di daerah tropis (Supriharyono, 2007).

Secara umum karang dikelompokkan menjadi dua yaitu karang hermatifik dan ahermatifik. Karang hermatifik memiliki kemampuan menghasilkan terumbu karena bersimbiosis dengan sel-sel tumbuhan yaitu zooxanthellae yang mampu berfotosintesis dimana hasil sampingannya berupa endapan karbonat. Endapan karbonat terakumulasi membentuk bangunan khas yang digunakan untuk mencirikan jenis atau spesies karang. Karang hermatifik hanya ditemukan di daerah tropis sedangkan karang ahermatifik tersebar di seluruh dunia (Dahuri *et al.* 1999).

Terumbu karang terintegrasi dengan ekosistem lain, seperti ekosistem mangrove dan lamun, untuk dapat memberikan jasa lingkungan. Terumbu karang akan memecah gelombang dari lautan, sehingga menciptakan perairan yang tenang di sekitar daratan. Hal tersebut menurunkan ancaman abrasi bagi ekosistem lamun, mangrove, maupun daratan utama (Moberg dan Rönnbäck, 2003).

Sementara itu, ekosistem mangrove dan lamun berfungsi sebagai penyerap polutan dan sedimen yang terbawa dari daratan, sehingga karang dapat tumbuh dengan optimum karena tidak tertutup oleh polutan atau sedimen (Morberg dan Folke, 1999).

Terumbu karang merupakan ekosistem dengan keanekaragaman biota yang paling tinggi dibandingkan ekosistem laut lainnya. Terumbu karang dihuni oleh berbagai organisme bentik dan organisme motil. Namun, keanekaragaman di daerah terumbu karang juga dipengaruhi oleh ekosistem lain di sekitar terumbu karang. Beberapa jenis ikan karang akan berada pada ekosistem lamun atau mangrove ketika fase juvenil untuk berlindung dari predator dan baru akan menetap di terumbu karang ketika telah mencapai ukuran tertentu (Nagelkerken *et al.*, 2000).

Hamparan terumbu karang yang terbentang di wilayah pesisir dan pulau-pulau kecil memiliki empat fungsi utama bagi kehidupan manusia, yaitu sebagai penyedia sumberdaya alam, penyedia jasa pendukung kehidupan, penyedia jasa kenyamanan, dan pelindung dari berbagai kemungkinan bencana alam. Sebagai penyedia sumberdaya alam, ekosistem terumbu karang mengandung berbagai sumberdaya ikan yang menjadi sumber penghidupan manusia, sebagai penyedia jasa pendukung kehidupan, ekosistem terumbu karang menyediakan objek wisata dan rekreasi yang sangat indah dan mempesona, serta sebagai pelindung dari bencana alam, ekosistem terumbu karang mampu melindungi manusia dari berbagai bahaya alam yang terjadi di wilayah pesisir dan pulau-pulau kecil (Nikijuluw *et al*, 2013).

Organisme yang berada di daerah terumbu karang, seperti ikan kakap, ikan kerapu, tiram, dan timun laut, memiliki nilai ekonomis tinggi bagi kehidupan manusia. Hal tersebut karena organisme tersebut dapat dimanfaatkan sebagai sumber protein bagi manusia. Hasil perikanan dari daerah terumbu karang berkisar 9-12% dari seluruh perikanan dunia (Morberg dan Folke, 1999). Terumbu karang yang sehat dapat menghasilkan 35 ton ikan/km²/tahun. Hasil perikanan karang di beberapa negara berkembang mencapai 25% dari total seluruh tangkapan (Moberg dan Onnbäck 2003). Sementara itu, hasil perikanan karang Indonesia pada tahun 1995, berkisar antara 5-10% dari seluruh hasil perikanan Indonesia (Cesar, 1996).

Terumbu karang sebagai objek wisata memberikan manfaat ekonomi bagi warga di daerah pesisir. Beberapa tahun terakhir, wisatawan lebih tertarik untuk melakukan ekoturisme, yaitu berwisata untuk mengamati keindahan atau keunikan alam. Masyarakat pesisir dapat mengambil keuntungan dengan menyediakan sarana dan prasarana bagi wisatawan yang ingin mengamati keindahan terumbu karang. Salah satu lokasi wisata terumbu karang di dunia berada di Australia, yaitu Great Barrier Reef diperkirakan menghasilkan hingga AUS\$682.000.000 pada tahun 1994 (Moberg dan Folke, 1999).

Aktivitas manusia di daerah terumbu karang memberikan ancaman kerusakan daerah terumbu karang. Hal tersebut disebabkan aktivitas manusia yang berlangsung terus menerus sehingga terumbu karang tidak memiliki waktu pemulihan, atau kehilangan daya lenting lingkungan. Daya lenting lingkungan yang hilang akan menyebabkan hilangnya jasa lingkungan dan manfaat ekonomi terumbu karang.

Kerusakan pada terumbu karang dapat disebabkan oleh faktor alami atau pun kegiatan manusia (antropogenik). Faktor alam yang mempengaruhi terumbu karang antara lain badai, gempa bumi, dan perubahan iklim (Jaap, 2000). Perubahan iklim akan berpengaruh terhadap terhadap terumbu karang karena kenaikan suhu permukaan air laut, peningkatan kadar CO₂ di laut, peningkatan sinar UVB, dan perubahan cuaca secara ekstrem (Wilkinson 1999). Kegiatan antropogenik di daerah terumbu karang juga meningkatkan ancaman kerusakan terumbu karang. Terumbu karang di Asia

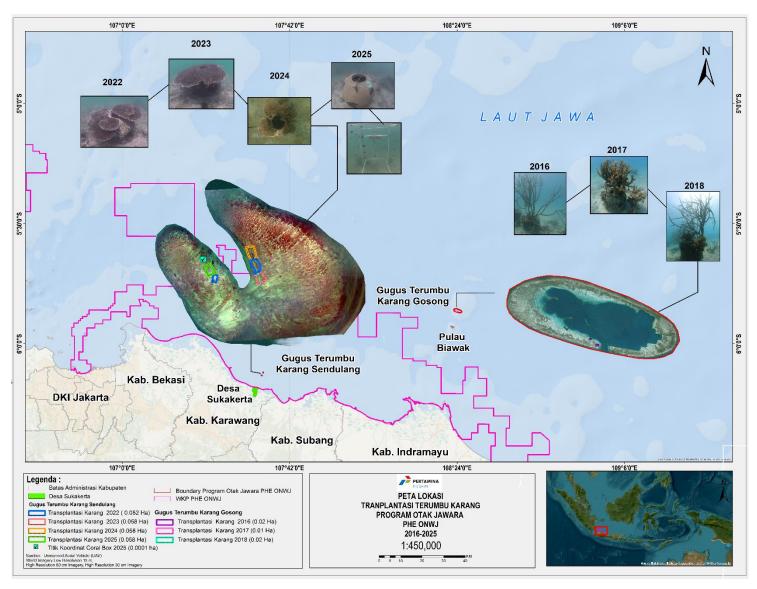
tenggara hanya tersisa 5% yang berkondisi baik, dan 38% lainnya telah mengalami kerusakan parah. Hal tersebut disebabkan oleh aktivitas perikanan, pariwisata, transportasi, dan juga penambangan (Jaap 2000, Yeemin *et al*, 2006, dan Tun 2008).

Kondisi ekosistem terumbu karang di laut utara Pulau Jawa mengalami degradasi (Estradivari *et al* , 2007, Tuti, 2010, dan Sudin Kelautan dan Perikanan DKI, 2013). PHE ONWJ melalui Program Orang Tua Asuh Karang di Laut Utara Jakarta dan Jawa Barat (OTAK JAWARA) berupaya untuk merehabilitasi ekosistem terumbu karang tersebut. Dengan demikian penyusunan laporan ini diharapkan mampu menginventarisasi kondisi ekosistem terumbu karang di wilayah laut Utara Jawa agar program rehabilitasi terumbu karang yang telah yang dilaksanakan oleh PHE ONWJ dapat berjalan dengan optimal.

1.2. Tujuan

Kegiatan program OTAK JAWARA PHE ONWJ ini dilaksanakan di dua lokasi yaitu, Gugus Karang Pulau Biawak, Kabupaten Indramayu dan Gugus Karang Sendulang, Kabupaten Karawang. Tujuan penyusunan laporan ini adalah untuk memetakan dan menginventarisasi kondisi ekosistem terumbu karang di lokasi program OTAK JAWARA tersebut. Beberapa parameter yang menjadi tujuan dari kajian ini diantaranya:

- 1. Mengkaji luasan areal transplantasi pada lokasi transplantasi di Gugus Karang Pulau Biawak dan Gugus Karang Sendulang
- 2. Mengkaji jenis *life form* dan genus karang hasil transplantasi di Gugus Karang Pulau Biawak dan Gugus Karang Sendulang
- 3. Mengkaji kegiatan transplantasi yang menggunakan inovasi modul honai di Gugus Karang Pulau Biawak dan inovasi modul paranje Gugus Karang Sendulang
- 4. Mengkaji keanekaragaman hayati ikan karang dan biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Pulau Biawak dan Gugus Karang Sendulang


BAB 2 METODOLOGI

2.1. Lokasi Kajian

Lokasi kajian (pengambilan data) terumbu karang hasil transplantasi dilaksanakan di lokasi yang yang berada di wilayah operasi PHE ONWJ. Data lokasi kajian terumbu karang yang dilakukan selengkapnya tersaji pada **Tabel 1** dan **Gambar 1**.

Tabel 1. Daftar Lokasi Montioring Keanekaragaman Hayati Ekosistem Terumbu Karang Hasil Transplantasi

No	Lokasi		
Α	KABUPATEN KARAWANG		
1	Gugus Karang Sendulang		
В	KABUPATEN INDRAMAYU		
1	Gugus Karang Pulau Biawak		

Gambar 1. Peta Lokasi Monitoring Kegiatan Transplantasi dan Keanekaragaman Hayati Ekosistem Terumbu Karang

2.2. Parameter yang Dikaji

Parameter terumbu karang, ikan karang, dan biota asosiasi karang yang dikaji meliputi jumlah media transplantasi, luasan areal transplantasi, jenis, kelimpahan, serta struktur komunitas ikan karang dan biota asosiasi karang lainnya.

2.2.1. Metode Pengumpulan Data

Pengumpulan data terumbu karang, ikan karang, dan biota asosiasi karang lainnya dilakukan dengan observasi bawah air secara langsung (*SCUBA diving*).

2.2.1.1. Prosedur Survei Terumbu Karang

Metode pengumpulan data kondisi terumbu karang ditujukan untuk mendata data karang hasil transplantasi. Metode yang akan digunakan adalah *Line Intercept Transect* (LIT) dan *Manta Tow*.

1. Metode Line Intercept Transect (LIT)

Metode transek garis menyinggung (*Line Intercept Transect* - LIT), menggunakan *roll meter* sepanjang 30 meter yang dibentangkan di atas substrat terumbu karang, sejajar garis pantai pada kedalaman yang telah ditentukan (**Gambar 2** dan **Gambar 3**). Data yang dicatat mencakup bentuk pertumbuhan (*life form*) koloni karang keras dan tipe substrat lain serta biota lain yang menyinggung *roll meter*. Keluaran dari hasil data yang diambil dari metode ini jumlah media transplantasi karang, jenis *life form* karang, genus karang transplantasi, serta luasan areal transplantasi.

Gambar 2. Pengambilan Data Menggunakan Metode LIT

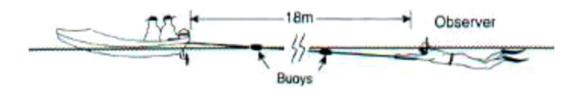
Gambar 3. Proses Pengambilan Data Menggunakan Metode LIT

English *et al.* (1997) menggolongkan bentuk pertumbuhan karang keras menjadi dua kelompok besar, yaitu *Acropora* dan *Non-Acropora*. Secara lengkap bentuk pertumbuhan dari masing-masing kelompok tersebut dapat dilihat pada **Tabel 2.**

Tabel 2. Kategori Bentuk Pertumbuhan Substrat Terumbu Karang

Kategori		Kode	Keterangan
Dead Coral		DC	Recently dead coral, white colored
Dead Coral with Algae		DCA	Dead coral overgrown with algae
Hard Coral:			
Acropora	Branching	ACB	Branching life form like a twig. Example: A. formosa, A. palmate
	Encrusting	ACE	Encrusting life form like an imperfect Acropora. Example: A. Cuneata
	Submassive	ACS	Branching plate and solid. Example: A. palifera
	Digitate	ACD	Branching tightly like fingers. Example: A. digitifera, A. Humilis
	Tabulate	ACT	Branching flat direction. Example: A. hyacinthus
Non Acropora	Branching	СВ	Branching like a tree branch. Example: Seriatopora ystrix
	Encrusting	CE	Creeping form, attached to substrate. Example: Montipora undata
	Foliose	CF	Form like a foliage. Example: Merulina ampliata
	Massive	CM	Form like a big rock. Example: Platygyra daedalea
	Submassive	CS	Solid shape with a bulge. Example: Porites lichen
	Mushroom	CMR	Form like mushroom, solitary. Example: Fungia repanda
	Millepora	CME	All fire corals, yellow tip of the colony.
	Heliopora	CHL	Coral blue, the blue color on the skeleton
Other Fauna			
Soft Coral		SC	Soft coral
Sponge		SP	
Zoanthids		ZO	
Others		ОТ	Anemone, crinoid, holothurian, gorgonian, giant shell, ascidian
Algae	Alga Assemblage	AA	More than one species of algae
	Coralline Algae	CA	Algae that have a limestone structure
	Halimeda	НА	Algae of genera Halimeda
	Macroalgae	MA	Large algae
	Turf Agae	TA	Resembling a fine grass
Abiothic	Sand	S	Sand
	Rubble	R	Rubbles of coral
	Silt	SI	Mud

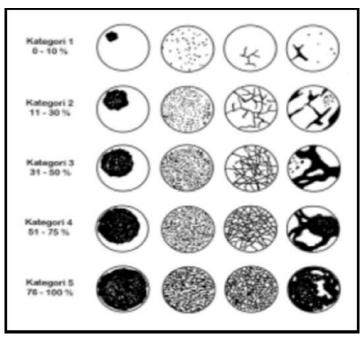
	Kate	gori	Kode	Keterangan
		Water	WA	Water column /gap with depth of > 50 cm
	_	Rock	RCK	
Other			DDD	Data is not recorded or missing


Sumber: English et al. 1997

Penggunaan metode *Line Intercept Transect* (LIT) akan lebih baik, jika kondisi perairan aman bagi penyelam, mengingat:

- Area pengamatan lebih luas (30 meter).
- Data yang diperoleh lebih presisi karena pengambilan data dilakukan dengan cara pengukuran bukan perkiraan.
- Disesuaikan dengan kondisi terumbu karang berdasarkan perkiraan awal penutupan dan topografi.

2. Metode Manta Tow


Metode *Manta Tow* adalah suatu teknik pengamatan terumbu karang dengan cara pengamat ditarik di belakang perahu kecil bermesin dengan menggunakan tali sebagai penghubung antara perahu dengan pengamat. Dengan kecepatan perahu yang tetap dan melintas di atas terumbu karang dengan lama tarikan 2 menit, pengamat akan melihat beberapa obyek yang terlintas serta nilai persentase penutupan karang hidup (karang keras dan karang lunak) dan karang mati. Pada saat bersamaan, pengendara *boat* mencatat posisi dan mengambil foto daerah daratan (**Gambar 4**)

Gambar 4. Pendataan Kondisi Habitat Terumbu Karang Dengan Metode Manta Tow

Posisi pengamat sejajar dengan tubir (*reef crest*) sehingga dapat mengamati kemiringan (*slope*) dengan maksimal. Lebar pengamatan bervariasi berkisar antara 10 - 12 meter. Penentuan arah pengambilan data dipengaruhi oleh beberapa faktor seperti angin, arus, dan arah sinar matahari. Arah pengambilan data biasanya searah jarum jam; utara selatan; atau timur barat mengikuti arah terumbu karang.

Dalam pengamatan penutupan karang (keras, lunak, dan mati), pengisian data untuk penutupan karang sebaiknya menggunakan persentase. Hal ini untuk memudahkan pengamat dalam menentukan masing-masing tutupan karang. Pengamat harus memperhatikan total persen dari penjumlahan tutupan karang ditambah dengan pasir dan tutupan lainnya jangan sampai melebihi 100%.

Gambar 5. Kategori Persentase Tutupan Karang (English et al., 1994)

2.2.1.2. Prosedur Survei Ikan Karang dan Biota Asosiasi Karang Lainnya

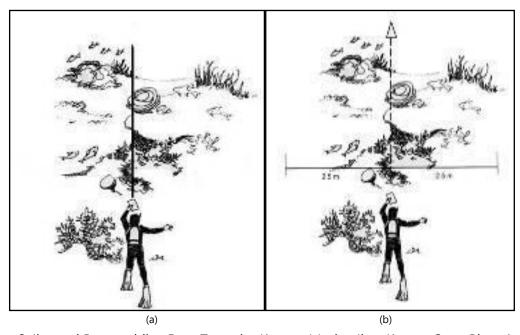
Metode yang digunakan untuk survei sumberdaya ikan karang dan biota asosiasi karang lainnya adalah sensus visual yang sudah dikembangkan oleh *Australian Institute of Marine Science* – AIMS (English *et al.*, 1997). Metode *visual sensus* ini dilakukan di sepanjang garis LIT dengan lebar pengamatan 2,5 meter ke kiri dan ke kanan LIT. *Observer* yang melakukan *visual sensus* dilengkapi dengan alat SCUBA untuk dapat secara langsung melakukan estimasi jenis dan kelimpahan ikan di area yang telah ditentukan (di dalam transek).

1. Rancangan Sampling

Dalam pemilihan rancangan sampling sangat ditentukan oleh lokasi pengamatan dan tujuan dari pencatatan data ikan dan biota asosiasi karang lainnya itu dilakukan. Pemilihan site ini sangat penting misalnya pendataan dilakukan di rataan terumbu (reef flat), tubiran (reef crest) atau lereng terumbu (reef slope). Dalam kegiatan monitoring ini visual sensus dilakukan disepanjang LIT untuk monitoring terumbu karang, di mana lokasinya mengikuti titik koordinat stasiun monitoring yang telah dilakukan pada tahun-tahun sebelumnya.

2. Pengumpulan Data

Peralatan yang digunakan dalam survei adalah 3 set lengkap alat SCUBA, sabak, pensil, *data sheet, roll meter* (30 meter), dan *Global Positioning System* (GPS) untuk menentukan posisi. Kegiatan ini membutuhkan total 4 (empat) orang dalam 1 tim dengan pembagian tugas sebagai berikut:


- a) 2 (dua) penyelam sebagai pengambil data/observer;
- b) 1 (satu) penyelam bertugas membentangkan *roll meter* sepanjang 30 meter dan melakukan dokumentasi foto dan video; dan
- c) 1 (satu) orang dibutuhkan di atas kapal sebagai supervisor kegiatan penyelaman.

3. Prosedur Sampling

Monitoring dilakukan di titik/stasiun pengamatan yang sudah ditetapkan sebelumya. Saat di lapang penentuan posisi transek mengikuti koordinat yang sudah direkam dalam unit *GPS*. Posisi kapal diusahakan sedekat mungkin dengan lokasi transek dan perhatikan arah arus dan angin. 3 (tiga) penyelam masuk ke air. Penyelam pertama membawa *underwater camera* dan *roll meter*, penyelam kedua (*observer* Ikan karang) dan penyelam ketiga (*observer* terumbu karang) membawa pensil dan sabak bawah air (*underwater slate* & *pencil*).

Penyelam pertama memasang transek sepanjang 30 meter. Setelah transek dipasang, penyelam kedua dan ketiga masing-masing mengambil data terumbu karang dan ikan karang. Setelah penyelam pertama memasang transek, dilanjutkan dengan melakukan dokumentasi kegiatan yang sedang berlangsung dan kondisi lingkungan bawah air di lokasi transek. Ilustrasi pengambilan data terumbu karang dan ikan karang dapat dilihat pada **Gambar 6.** dan **Gambar 7.**

Akurasi data dari kegiatan ini sangat tergantung dari keahlian dan pengalaman *observer* dalam observasi terumbu karang dan ikan karang. Beberapa buku yang umum digunakan sebagai referensi identifikasi terumbu karang dan ikan karang antara lain English *et al.* (1994), Veron, J.E.N. (2000), dan Allen G.R. (2000).

Gambar 6. Ilustrasi Pengambilan Data Terumbu Karang (a), dan Ikan Karang Serta Biota Asosiasi Karang Lainnya (b)

Gambar 7. Pengamatan Ikan Karang dan Biota Asoisasi Karang Lainnya

4. Manajemen Data

Hasil pengumpulan data di lapangan yang berupa *data sheet* kemudian dipindahkan ke komputer untuk selanjutnya diolah dan dianalisis. Pemindahan data ini dilakukan oleh *observer* yang bersangkutan dan pemeriksaan/validasi data perlu dilakukan oleh *observer* tersebut untuk menghindari kesalahan dalam *entry* data dan analisa data. Data yang sudah selesai dianalisis kemudian di simpan dalam bentuk *soft copy* ke dalam *external harddisc* atau *flash drive*.

2.3. Metode Analisis Data

2.3.1. Ikan Karang dan Biota Asosiasi Karang Lainnya

Analisis terhadap data ikan karang dan biota asosiasi karang lainnya hasil pengamatan dilakukan untuk mengetahui jenis, kelimpahan, indeks keragaman, indeks keseragaman, dan indeks dominansi.

2.3.2.1. Kelimpahan

Kekayaan jenis ini untuk melihat jumlah ikan dan biota asosiasi karang lainnya yang berada dalam suatu kawasan tertentu. Hal ini berpengaruh nyata terhadap keanekaragaman ikan karang.

2.3.2.2. Indeks Keanekaragaman

Indeks ini merupakan perhitungan yang didasarkan pada informasi mengenai keteracakan dalam sebuah sistem dan logaritma basis dua. Indeks yang digunakan adalah indeks keanekaragaman Shannon - Wiener dengan rumus:

$$H' = -\sum_{i-1}^{s} Pi \log Pi$$

Keterangan:

H': Indeks keanekaragaman Shannon-Wiener

Pi : n_i/N

n_i: Jumlah individu jenis ke-i

N : Jumlah total individu seluruh jenis

S : Jumlah jenis

Indeks keanekaragaman digolongkan dalam kriteria sesuai dengan klasifikasi indeks Shannon – Wiener (**Tabel 5**).

Tabel 3. Kriteria Penilaian Tingkat Keanekaragaman Berdasarkan Nilai Indeks Diversitas Shannon-Wiener (H').

Nilai Indeks (H ['])	Kriteria
< 1	Keanekaragaman kecil, penyebaran jumlah individu tiap jenis rendah, kestabilan komunitas rendah, tekanan ekologi besar
1 – 3	Keanekaragaman sedang, penyebaran jumlah individu tiap jenis sedang, kestabilan komunitas sedang, tekanan ekologi sedang
> 3	Keanekaragaman tinggi, penyebaran jumlah individu tiap jenis tinggi, kestabilan komunitas tinggi, tekanan ekologi rendah

2.3.2.3. Indeks Keseragaman

Nilai indeks keseragaman digunakan untuk menggambarkan komposisi individu setiap spesies yang terdapat dalam satu komunitas ikan karang. Indeks ini dihitung menggunakan rumus:

$$E = \frac{H'}{H_{maks}}$$

Keterangan:

E : Indeks keseragamanH' : Indeks keanekaragaman

 H_{maks} : Logaritma natural dari jumlah jenis yang ditemukan ($H_{maks} = In S$)

S : Jumlah jenis yang ditemukan

Indeks keseragaman berkisar antara 0-1. Semakin kecil nilai E, semakin kecil pula keseragaman antar populasi di dalam suatu komunitas, sebagai contoh bila nilai indeks keseragaman kecil maka ada kecenderungan penyebaran jumlah individu pada setiap jenis tidak sama dan ada kecenderungan spesies tertentu yang dominan dan sebaliknya. Untuk menilai kondisi komunitas ikan karang digunakan kisaran indeks keseragaman yang dinyatakan oleh Krebs (1989) pada **Tabel 4**.

Tabel 4. Kriteria Penilaian Indeks Keseragaman

Nilai Indeks Keseragaman (E)	Kondisi Komunitas
0.00 - 0.50	Tertekan/Rendah
0.51 – 0.75	Labil/Sedang
0.75 – 1.00	Stabil/Tinggi

2.3.2.4. Indeks Dominansi

Indeks dominansi digunakan untuk menggambarkan ada tidaknya dominansi suatu jenis dalam satu komunitas. Rumus yang digunakan untuk menghitung indeks ini adalah Indeks dominansi Simpson :

$$C = \sum_{i=1}^{S} \left(\frac{n_i}{N}\right)^2$$

Keterangan:

C : Indeks dominansi

n_i : Jumlah individu jenis ke-i N : Jumlah total individu

S : Jumlah jenis yang ditemukan

Kisaran nilai indeks dominansi adalah 0-1, jika nilainya mendekati 0 (0,00-0,50) berarti hampir tidak ada spesies/genera yang mendominasi dan apabila nilai indeks dominansi mendekati 1 (0,51-1,00) berarti ada salah satu spesies/genera yang mendominasi populasi (Odum E.P., 1993).

2.3.2.5. Kelompok Fungsi Ikan Karang

Berdasarkan fungsi dalam sistem terumbu karang, ikan terumbu dibagi atas tiga kelompok (Adrim dan Yahmantoro, 1993) yaitu:

- 1. Ikan mayor adalah ikan-ikan yang berperan secara umum dalam sistem rantai makanan di daerah terumbu karang;
- 2. Ikan target adalah ikan yang mempunyai nilai ekonomis dan dikonsumsi oleh masyarakat
- 3. Ikan indikator adalah ikan yang menjadi parameter terhadap kesehatan terumbu karang dalam hal ini dari famili Chaetodontidae.

BAB 3 HASIL STUDI

3.1. OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak

3.1.1. Terumbu Karang Hasil Transplantasi di Gugus Karang Pulau Biawak

3.1.1.1 Areal Transplantasi di Gugus Karang Pulau Biawak

Kegiatan transplantasi terumbu karang yang telah dilaksanakan PHE ONWJ melalui program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak secara keseluruhan adalah seluas 0,05 ha.

3.1.1.2.1. Life Form Karang Transplan di Gugus Karang Pulau Biawak

Karang keras pada dasarnya hewan yang hidup berkoloni. Karang yang hidupnya berkoloni memiliki variasi bentuk pertumbuhan (*life form*). Bentuk pertumbuhan karang dibagi atas karang Acropora dan karang non Acropora (Zurba, 2019). Secara umum, *life form* yang ditransplan pada program transplantasi terumbu karang OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak terdiri dari jenis Acropora Branching (ACB) sebanyak 824 fragmen dan Acropora Tabulate (ACT) sebanyak 613 fragmen. Kedua *life form* tersebut paling banyak ditransplan karena ketersediaannya di lokasi karang alami di dekat lokasi transplantasi paling banyak ditemukan. Acropora merupakan salah satu kelompok karang yang sangat dominan pada suatu perairan. Genera karang Acropora umumnya memiliki bentuk morfologi koloni yang bercabang yang merupakan salah satu komponen utama pembangun terumbu karang (Thamrin, 2012).

Life form lain yang ditransplan diantaranya adalah Acropora submassive (ACS), Coral Branching (CB), Coral Massive (CM), Coral Encrusting (CE), dan Coral Foliose (CF). Jumlah dari masing-masing life form yang ditransplan selama program OTAK JAWARA dengan menerapkan inovasi modul honai berjalan di Gugus Karang Pulau Biawak berlangsung ditampilkan pada **Tabel 5**.

Tabel 5. *Life Form* Yang Ditransplan Selama Program Otak Jawara dengan Menerapkan Inovasi Modul Honai Berlangsung

No.	Life Form	Jumlah <i>Life Form</i> (Fragmen)
1	Acropora Branching (ACB)	824
2	Acropora Tabulate (ACT)	613
3	Acropora submassive (ACS)	10
4	Coral Branching (CB)	144
5	Coral Massive (CM)	21
6	Coral Encrusting (CE)	8
7	Coral Foliose (CF)	3
	Jumlah	1.623

Jumlah *life form* yang telah ditransplan melalui program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak adalah sebanyak 1.623 fragmen. Dokumentasi masing-masing jenis *life form* ditampilkan pada **Gambar 8**.

Gambar 8. Life Form Karang yang Ditransplan di Modul Honai

3.1.1.2.2. Genus Karang Transplan di Gugus Karang Pulau Biawak

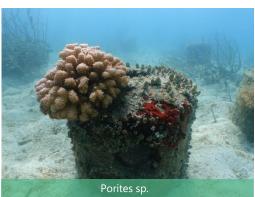
Genus terumbu karang merupakan klasifikasi ilmiah yang digunakan untuk mengelompokkan beragam jenis terumbu karang berdasarkan karakteristik morfologi dan genetik yang serupa. Genus terumbu karang yang ditransplan pada program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak adalah Acropora, Porites, Stylophora, Pavona, dan Pocillapora. Jumlah fragmen dari masing-masing genus yang ditransplan selama program berlangsung ditampilkan pada **Tabel 6**.

Tabel 6. Jumlah Fragmen dari Masing-Masing Genus yang Ditransplan Selama Program Berlangsung

No	Genus	Jumlah	Satuan
1	Acropora	1.388	fragmen
2	Porites	182	fragmen
3	Stylophora	46	fragmen
4	Pavona	3	fragmen
5	Pocillopora	4	fragmen
	Jumlah	1.623	fragmen

Genus karang yang paling banyak ditransplan adalah Acropora. Genus Acropora adalah genus karang yang paling beragam, dan paling banyak ditemukan. Karang Acropora memiliki bentuk yang beragam, mulai dari bercabang, seperti pohon, hingga seperti pipa. Karang Acropora dikenal dengan pertumbuhan yang cepat dan cenderung mendominasi bagian atas terumbu karang (Dubinsky, 2011). Acropora yang telah ditransplantasi adalah sebanyak 1.388 fragmen.

Kecepatan pertumbuhan karang bervariasi dan tergantung bentuk koloni. Jenis karang dalam bentuk *massive* hanya memiliki kecepatan pertumbuhan diameter sekitar 2 cm/tahun, sementara untuk pertumbuhan ke atas hanya kurang dari 1 cm/tahun. Pertumbuhan yang relatif cepat dimiliki karang dengan genus Acropora (**Gambar 9**), dimana kelompok genus ini bisa tumbuh sekitar 5 sampai 10 cm/tahun atau lebih. kecepatan pertumbuhan karang termasuk lambat dan sangat dipengaruhi oleh berbagai faktor lingkungan dimana karang tersebut berada (Veron, 2000).

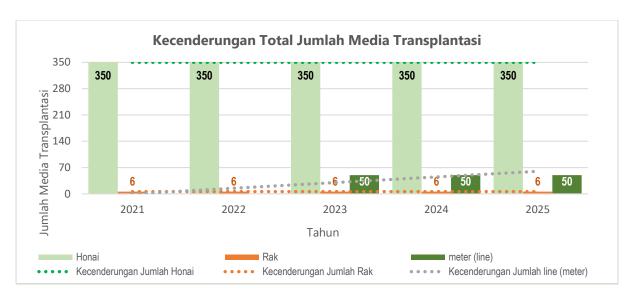


Gambar 9. Acropora yang Tumbuh Menjulang di Modul Honai Hasil Kegiatan Transplantasi Terumbu Karang di Gugus Karang Pulau Biawak

Selain Acropora, genus karang yang ditransplan pada kegiatan transplantasi di Gugus Karang Pulau Biawak adalah Porites dan Stylophora. Karang genus Porites cenderung memiliki bentuk bulat atau tumpul dengan struktur yang kokoh serta dengan pertumbuhan yang relatif lambat. Beberapa jenis Porites dapat membentuk karang yang sangat besar dan memberikan fondasi penting bagi ekosistem terumbu karang (Dubinsky, 2011). Jumlah Porites yang telah ditransplan pada kegiatan transplantasi terumbu karang ini adalah sebanyak 182 fragmen. Stylophora adalah genus karang

yang memiliki bentuk seperti meja, karang ini biasanya berwarna putih, krem, atau coklat. Karang Stylophora dapat hidup di perairan dangkal hingga laut dalam (Spalding *et al.*, 2001). Jumlah Stylophora yang telah ditransplan pada kegiatan transplantasi terumbu karang ini adalah sebanyak 46 fragmen. Pavona dan Pocillopora merupakan genus karang yang hidup di modul honai hasil reproduksi seksual (planulasi), kedua genus karang tersebut hidup secara suksesi alami. Dokumentasi foto genus Porites dan Stylophora yang ditransplan di modul honai di Gugus Karang Pulau Biawak ditampilkan pada **Gambar 10** berikut.

Gambar 10. Transplantasi Genus Lainnya pada Modul Honai

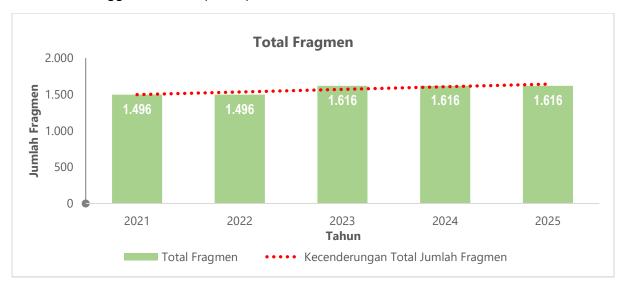

3.1.1.3. Kecenderungan Karang Hasil Transplantasi di Gugus Karang Pulau Biawak

Upaya rehabilitasi ekosistem terumbu karang di Gugus Karang Pulau Biawak melalui program OTAK JAWARA telah dilaksanakan PHE ONWJ sejak tahun 2016. Kegiatan transplantasi terumbu karang di Gugus Karang Pulau Biawak yang dilaksanakan oleh PHE ONWJ dengan menerapkan inovasi media transplantasi honai.

3.1.1.3.1. Kecenderungan Total Media Transplantasi di Gugus Karang Pulau Biawak

Kegiatan transplantasi terumbu karang di Gugus Karang Pulau Biawak sebelum Tahun 2020 dilaksanakan dengan menggunakan menggunakan 2 (dua) media transplantasi yaitu honai dan rak. Jumlah honai yang menjadi media transplantasi adalah sebanyak 350 honai dan jumlah rak yang menjadi media transplan adalah sebanyak 6 rak. Pada Tahun 2023 dilaksanakan transplantasi dengan metode tali (*line transplant*), panjang tali yang menjadi media transplan adalah sepanjang 50 meter.

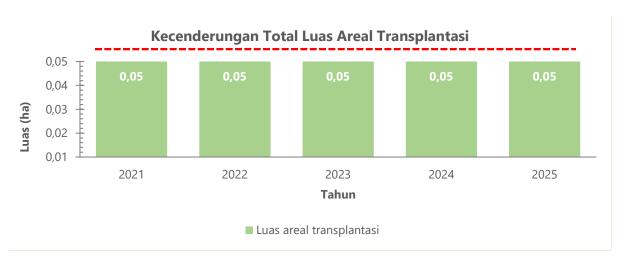
Kecenderungan total media transplantasi yang tersebar di Gugus Karang Pulau Biawak tersebut pada Tahun 2020 adalah sebanyak 350 honai, dan 6 rak. Total media transplantasi tersebut kemudian meningkat pada Tahun 2025 menjadi 350 honai, 6 rak, dan 50 meter *line*. Kecenderungan total pada setiap jenis media transplantasi pada program tersebut selama lima (5) tahun terakhir mulai dari Tahun 2021 hingga 2025 ditampilkan pada **Gambar 11** berikut.



Gambar 11. Kecenderungan Total Luas Media Transplantasi pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 – 2025

3.1.1.3.2. Kecenderungan Total Fragmen Karang pada Program Transplantasi di Gugus Karang Pulau Biawak

Program OTAK JAWARA dengan menerapkan inovasi media transplantasi honai di Gugus Karang Pulau Biawak dilaksanakan dengan melakukan penempelan fragmen karang. Jumlah fragmen karang yang telah ditransplantasi selama program ini berlangsung adalah sebanyak 1.616 fragmen. Data jumlah fragmen yang ditransplan selama lima (5) tahun terakhir mulai dari Tahun 2021 sampai Tahun 2025 ditampilkan pada **Tabel 9**.


Kecenderungan total fragmen yang ditransplan pada program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2020 adalah 1.496 fragmen, total fragmen yang ditransplan kemudian meningkat pada Tahun 2025 menjadi 1.616 fragmen. Kecenderungan total fragmen yang ditransplan selama lima (5) tahun terakhir mulai dari Tahun 2021 hingga 2025 ditampilkan pada **Gambar 12** berikut.

Gambar 12. Kecenderungan Fragmen yang ditransplan pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 – 2025

3.1.1.3.3. Kecenderungan Luasan Areal Transplantasi di Gugus Karang Pulau Biawak

Kegiatan transplantasi terumbu karang di Gugus Karang Pulau Biawak sebelum Tahun 2021 hingga tahun 2025 dilaksanakan pada areal seluas 0,05 ha. Kecenderungan total luasan areal transplantasi terumbu karang melalui program OTAK JAWARA selama lima (5) tahun terakhir mulai dari Tahun 2021 hingga 2025 ditampilkan pada **Gambar 13** berikut.

Gambar 13. Kecenderungan Total Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Honai di Gugus Karang Pulau Biawak pada Periode Tahun 2021 - 2025

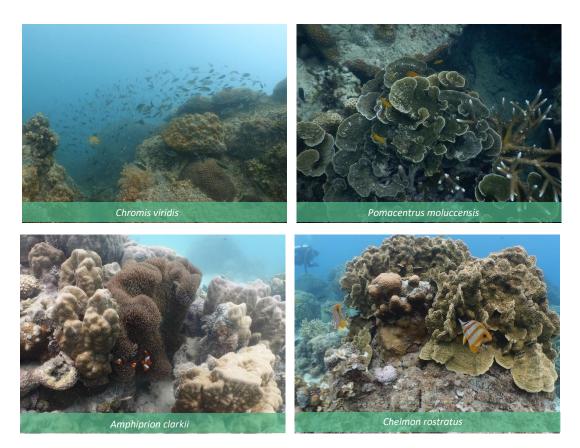
3.1.2. Keanekaragaman Hayati Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Ekosistem terumbu karang sebagai ekosistem kompleks dan produktif yang dominan tersebar di kawasan pulau-pulau kecil Indonesia berperan penting sebagai habitat bagi berbagai jenis ikan, sehingga memberikan dampak pada tingginya produktivitas perikanan (ikan-ikan karang) yang bernilai ekonomis tinggi, dan juga sebagai aset yang berharga bagi kegiatan pariwisata bahari karena memiliki beraneka ragam biota laut dan panorama yang sangat indah (Nikijuluw *et al.* 2013).

Ikan karang merupakan jenis ikan yang habitat umumnya pada karang hidup. Keberadaan ikan karang sangat dipengaruhi oleh kondisi kesehatan terumbu. Terumbu karang yang sehat merupakan indikator kelimpahan ikan karang. Kebanyakan dari ikan-ikan tersebut bersembunyi di celah-celah karang sebagai tempat berlindung. Selain itu, ikan tersebut merupakan target tangkapan nelayan karena memiliki nilai ekonomi yang tinggi (Zurba, 2019).

Ikan karang adalah salah satu biota yang hidup pada ekosistem terumbu karang dan hidupnya sangat bergantung pada kondisi terumbu karang. Peranan biofisik ekosistem terumbu karang sangat beragam, diantaranya sebagai tempat tinggal, tempat berlindung, tempat mencari makan dan berkembang biak bagi beragam biota laut, termasuk didalamnya ikan karang.

3.1.2.1. Komposisi Jenis Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak


Jumlah spesies ikan karang yang dijumpai pada Tahun 2025 di lokasi transplantasi Gugus Karang Pulau Biawak adalah sebanyak 30 spesies. Jumlah spesies ikan karang pada lima (5) tahun terakhir mulai dari Tahun 2021 hingga Tahun 2025 relatif selalu mengalami peningkatan. Jenis spesies ikan karang di lokasi transplantasi di Gugus Karang Pulau Biawak ditampilkan pada **Tabel 7** dan beberapa jenis ikan karang yang ditemukan di sekitar lokasi transplantasi di Gugus Pulau Biawak ditampilkan pada **Gambar 14**.

Tabel 7. Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak

N1.	Smaring	Keberadaan Spesies					
No	Spesies	2021	2022	2023	2024	2025	
1	Abudefduf sexfasciatus	1	1	1	1	1	
2	Abudefduf vaigiensis	-	1	1	1	1	
3	Amblyglyphidodon curacao	1	1	1	1	1	
4	Amphiprion clarkii	1	1	1	1	1	
5	Caesio teres	1	1	1	1	1	
6	Chaetodon baronessa	1	1	1	1	1	
7	Chaetodon octofasciatus	1	1	1	1	1	
8	Chaetodontoplus mesoleucus	1	1	1	1	1	
9	Cheilinus fasciatus	-	-	1	1	1	
10	Chelmon rostratus	-	-	1	1	1	
11	Chlorurus sordidus	1	1	-	ı	-	
12	Choerodon anchorago	-	1	1	1	1	
13	Chromis viridis	1	1	1	1	1	
14	Chrysiptera rex	1	1	1	1	1	
15	Dascyllus reticulatus	1	-	-	-	-	
16	Diproctacanthus xanthurus	-	1	1	1	1	
17	Dischistodus perspicillatus	1	1	1	1	1	
18	Dischistodus prosopotaenia	1	1	1	1	1	
19	Epibulus insidiator	1	1	1	1	1	
20	Halichoeres chloropterus	1	1	1	1	1	
21	Halichoeres dussumieri	-	1	1	1	1	
22	Halichoeres melanochir	1	1	1	1	1	
23	Heniochus varius	_	-	1	1	1	
24	Labroides dimidiatus	1	1	1	1	1	
25	Lutjanus decussatus	1	1	1	1	1	
26	Neoglyphidodon crossi	1	1	1	1	1	
27	Neoglyphidodon melas	_	1	1	1	1	
28	Pomacentrus moluccensis	1	1	1	1	1	
29	Pterocaesio tessellatus	1	1	1	1	1	
30	Scarus dimidiatus	1	_	-	_	-	
31	Scarus flavipectoralis	1	1	1	1	1	
32	Scarus quoyi	1	1	1	1	1	
33	Thalassoma lunare	1	1	1	1	1	
17 - 1	Keberadaan Spesies	25	28	30	30	30	

Keterangan:

(1): ditemukan(-): tidak ditemukan

Gambar 14. Beberapa Jenis Ikan Karang yang Ditemukan di Sekitar Lokasi Transplantasi di Gugus Pulau Biawak

3.1.2.2. Kelimpahan (Komposisi Jumlah Individu) Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi Gugus Karang Pulau Biawak pada Tahun 2025 adalah 789 ekor. Jenis ikan karang dengan jumlah individu yang paling banyak ditemukan adalah jenis *Caesio teres* dengan jumlah individu sebanyak 108 ekor. Jenis ikan karang dengan jumlah individu paling sedikit ditemukan adalah jenis *Heniochus varius* dengan jumlah individu sebanyak 3 ekor. Jumlah individu ikan karang selama lima (5) tahun terakhir mulai Tahun 2021 hingga Tahun 2025 cenderung mengalami peningkatan. Jumlah individu dari setiap jenis yang ditemukan ditampilkan pada **Tabel 8.**

Tabel 8. Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Pulau Biawak

	<u> </u>						
NI.	Consider .	Jumlah Individu (ekor)					
No	Spesies	2021	2022	2023	2024	2025	
1	Abudefduf sexfasciatus	27	30	30	30	30	
2	Abudefduf vaigiensis	0	26	20	20	20	
3	Amblyglyphidodon curacao	32	27	21	21	21	
4	Amphiprion clarkii	3	6	8	8	8	
5	Caesio teres	97	56	108	108	108	
6	Chaetodon baronessa	8	20	24	24	24	
7	Chaetodon octofasciatus	11	6	17	17	17	
8	Chaetodontoplus mesoleucus	37	13	7	7	7	
9	Cheilinus fasciatus	0	0	15	15	15	
10	Chelmon rostratus	0	0	24	24	24	
11	Chlorurus sordidus	11	3	0	0	0	

NI.	Constru	Jumlah Individu (ekor)					
No	Spesies	2021	2022	2023	2024	2025	
12	Choerodon anchorago	0	8	17	17	17	
13	Chromis viridis	23	35	81	81	81	
14	Chrysiptera rex	22	48	37	37	37	
15	Dascyllus reticulatus	10	0	0	0	0	
16	Diproctacanthus xanthurus	0	24	18	18	18	
17	Dischistodus perspicillatus	72	83	21	21	21	
18	Dischistodus prosopotaenia	22	10	9	9	9	
19	Epibulus insidiator	27	20	20	20	20	
20	Halichoeres chloropterus	8	17	14	14	14	
21	Halichoeres dussumieri	0	7	10	10	10	
22	Halichoeres melanochir	2	22	24	24	24	
23	Heniochus varius	0	0	3	3	3	
24	Labroides dimidiatus	2	2	6	6	6	
25	Lutjanus decussatus	2	4	11	11	11	
26	Neoglyphidodon crossi	14	13	6	6	6	
27	Neoglyphidodon melas	0	4	8	8	8	
28	Pomacentrus moluccensis	40	72	62	62	62	
29	Pterocaesio tessellatus	7	12	11	11	11	
30	Scarus dimidiatus	10	0	0	0	0	
31	Scarus flavipectoralis	34	61	62	62	62	
32	Scarus quoyi	10	3	5	5	5	
33	Thalassoma lunare	40	83	90	90	90	
	Jumlah Individu (ekor)	571	715	789	789	789	

3.1.2.3. Indeks Keanekaragaman Jenis Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada pengamatan Tahun 2025 adalah sebesar 3,01 dengan kategori tinggi. Kondisi ikan karang di lokasi pengamatan adalah keanekaragamannya tinggi, penyebaran jumlah individu tiap jenis tinggi, kestabilan komunitas tinggi, dan tekanan ekologi rendah. Indeks keanekaragaman jenis (H') ikan karang dari Tahun 2021 hingga Tahun 2025 ditampilkan pada **Tabel 9** berikut.

Tabel 9. Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak

NIa	Smarine	Indeks Keanekaragaman Jenis (H')					
No	Spesies	2021	2022	2023	2024	2025	
1	Abudefduf sexfasciatus	0,13	0,13	0,12	0,12	0,12	
2	Abudefduf vaigiensis	-	0,11	0,09	0,09	0,09	
3	Amblyglyphidodon curacao	0,11	0,12	0,10	0,10	0,10	
4	Amphiprion clarkii	0,02	0,04	0,05	0,05	0,05	
5	Caesio teres	0,32	0,26	0,27	0,27	0,27	
6	Chaetodon baronessa	0,03	0,10	0,11	0,11	0,11	
7	Chaetodon octofasciatus	0,09	0,04	0,08	0,08	0,08	
8	Chaetodontoplus mesoleucus	0,13	0,07	0,04	0,04	0,04	
9	Cheilinus fasciatus	-	-	0,08	0,08	0,08	
10	Chelmon rostratus	-	-	0,11	0,11	0,11	
11	Chlorurus sordidus	0,06	0,02	-	ı	-	
12	Choerodon anchorago	-	0,05	0,08	0,08	0,08	
13	Chromis viridis	0,13	0,18	0,23	0,23	0,23	
14	Chrysiptera rex	0,14	0,17	0,14	0,14	0,14	
15	Dascyllus reticulatus	0,04	-	-	-	-	
16	Diproctacanthus xanthurus	-	0,11	0,09	0,09	0,09	

17	Dischistodus perspicillatus	0,21	0,24	0,10	0,10	0,10
18	Dischistodus prosopotaenia	0,17	0,06	0,05	0,05	0,05
19	Epibulus insidiator	0,09	0,10	0,09	0,09	0,09
20	Halichoeres chloropterus	0,04	0,08	0,07	0,07	0,07
21	Halichoeres dussumieri	-	0,04	0,06	0,06	0,06
22	Halichoeres melanochir	0,04	0,10	0,11	0,11	0,11
23	Heniochus varius	-	-	0,02	0,02	0,02
24	Labroides dimidiatus	0,02	0,02	0,04	0,04	0,04
25	Lutjanus decussatus	0,03	0,03	0,06	0,06	0,06
26	Neoglyphidodon crossi	0,06	0,07	0,04	0,04	0,04
27	Neoglyphidodon melas	-	0,03	0,05	0,05	0,05
28	Pomacentrus moluccensis	0,24	0,22	0,20	0,20	0,20
29	Pterocaesio tessellatus	0,04	0,07	0,06	0,06	0,06
30	Scarus dimidiatus	-	-	-	1	-
31	Scarus flavipectoralis	0,20	0,20	0,20	0,20	0,20
32	Scarus quoyi	0,08	0,02	0,03	0,03	0,03
33	Thalassoma lunare	0,26	0,24	0,25	0,25	0,25
Inde	eks Keanekaragaman Jenis (H')	2,69	2,89	3,01	3,01	3,01

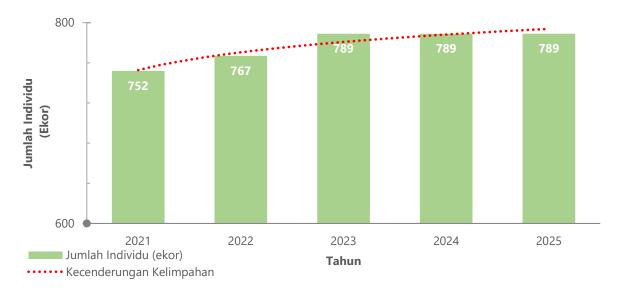
Keterangan:

(-): tidak ditemukan

3.1.2.4. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Indeks keseragaman (E) ikan karang di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 0,88. Nilai tersebut menunjukkan kelimpahan individu dari berbagai spesies ikan karang di areal transplantasi di Gugus Karang Pulau Biawak tersebar secara merata, yang berarti terdapat banyak spesies ikan karang yang hidup di komunitas tersebut.

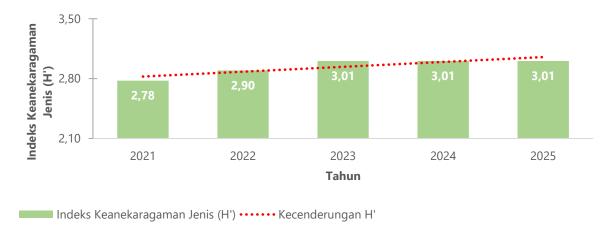
Indeks dominansi (C) ikan karang di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 0,07. Nilai tersebut menunjukkan distribusi ikan dalam ekosistem tersebut relatif merata. Tidak ada satu spesies ikan yang mendominasi sepenuhnya, serta variasi spesies ikan dalam populasi terbilang seimbang. Indeks keseragaman dan indeks dominansi ikan karang di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2024 ditampilkan pada **Tabel 10** berikut.


Tabel 10. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025

Indeks	Nilai	Status
Keseragaman (E)	0,88	stabil/tinggi
Dominansi (C)	0,07	tidak ada spesies yang mendominasi

3.1.2.5. Status dan Kecenderungan Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

3.1.2.5.1. Status dan Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak


Kecenderungan kelimpahan ikan karang pada lokasi transplantasi di Gugus Karang Pulau Biawak dari Tahun 2021 hingga 2025 relatif selalu mengalami peningkatan. Pada Tahun 2020 kelimpahan ikan karang di lokasi tersebut adalah sebanyak 734 ekor dan pada Tahun 2025 kelimpahan ikan karang meningkat menjadi 789 ekor. Kecenderungan kelimpahan ikan karang selama 5 (lima) Tahun mulai dari Tahun 2021 hingga Tahun 2025 ditampilkan pada **Gambar 15** berikut.

Gambar 15. Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Ikan Karang (ekor) di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Tahun 2021-2025

3.1.2.5.2. Status dan Kecenderungan indeks Keanekaragaman Jenis (H') Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Kecenderungan nilai indeks keanekaragaman jenis (H') ikan karang pada lokasi transplantasi di Gugus Karang Pulau Biawak dari Tahun 2021 hingga 2025 relatif selalu mengalami peningkatan. Pada Tahun 2020 indeks keanekaragaman ikan karang adalah sebesar 2,69 (kategori sedang) dan pada tahun 2025 indeks keanekaragaman ikan karang meningkat menjadi sebesar 3,01 (kategori tinggi). Kecenderungan indeks keanekaragaman ikan karang dari tahun 2021 hingga 2025 ditampilkan pada **Gambar 16** berikut.

Gambar 16. Kecenderungan Indeks Keanekaragaman (H') Ikan Karang di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2021-2025

3.1.3. Keanekaragaman Hayati Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Pulau Biawak

Keanekaragaman hayati biota asosiasi karang lainnya (makrozoobenthos) di ekosistem terumbu karang merujuk pada beragamnya organisme makroskopis yang hidup di dasar laut di sekitar terumbu karang. Makrozoobenthos mencakup berbagai jenis invertebrata laut seperti moluska,

krustasea, echinodermata, dan berbagai jenis hewan lainnya. Keanekaragaman makrozoobenthos di ekosistem terumbu karang sangat penting karena organisme ini berperan dalam berbagai fungsi ekologi, termasuk pemakan detritus, proses dekomposisi, dan interaksi dengan organisme lain dalam rantai makanan laut (Purnomo, 2008).

3.1.3.1. Komposisi Jenis Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Pulau Biawak

Jumlah spesies biota asosiasi karang lainnya yang ditemukan pada Tahun 2025 di lokasi transplantasi Gugus Karang Pulau Biawak adalah 10 spesies. Spesies biota asosiasi karang lainnya yang ditemukan Tahun 2021 hingga Tahun 2025 relatif mengalami peningkatan. Jenis spesies biota asosiasi karang lainnya di lokasi transplantasi Gugus Karang Pulau Biawak ditampilkan pada **Tabel 11** berikut.

Tabel 11. Komposisi Jumlah Spesies Biota Asosiasi Karang Lainnya di Lokasi Transplantasi Karang di Gugus Karang Pulau Biawak

NI.	Cuasias		Keberadaan Spesies				
No	Spesies	2021	2022	2023	2024	2025	
1	Balanomorpha sp	1	1	1	1	1	
2	Calyptraea sp	1	1	1	1	1	
3	Ciprea sp	1	1	1	1	1	
4	Culcita sp	-	-	1	1	1	
5	Diadema antillarum	-	1	1	1	1	
6	Didemnum sp	1	1	1	1	1	
7	Harpago sp	1	1	1	1	1	
8	Pinctada sp	1	1	1	1	1	
9	Tridacna sp	-	-	1	1	1	
10	Trochus sp	1	1	1	1	1	
	Jumlah spesies	7	8	10	10	10	

Keterangan:

(1): ditemukan(-): tidak ditemukan

Modul Honai yang juga berfungsi sebagai *artificial reef* menjadi tempat berlindung komunitas biota asosiasi karang. Dengan meningkatnya keanekaragaman komunitas biota asosiasi karang di lokasi transplantasi di Gugus Karang Pulau Biawak, hal tersebut menandakan terjadi perbaikan kualitas lingkungan di lokasi tersebut. Dokumentasi foto biota asosiasi karang lainnya yang ditemukan di lokasi transplantasi di Gugus Karang Pulau Biawak ditampilkan pada **Gambar 17** berikut.

Gambar 17. Biota Asosiasi Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Pulau Biawak

3.1.3.2. Komposisi Jumlah Individu Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Pulau Biawak

Jumlah individu biota asosiasi karang lainnya yang ditemukan pada saat pengamatan di lokasi transplantasi Gugus Karang Pulau Biawak pada tahun 2025 adalah 3.870 individu. Jenis biota biota asosiasi karang lainnya dengan jumlah individu yang paling banyak ditemukan adalah jenis *Didemnum sp* dengan jumlah individu sebanyak 2.582. Jenis biota asosiasi lain dengan jumlah individu paling sedikit ditemukan adalah jenis *Culcita sp* dengan jumlah individu sebanyak 6. Jumlah individu biota asosiasi karang lainnya pada Tahun 2021 hingga Tahun 2025 mengalami peningkatan. Jumlah individu dari setiap jenis biota asosiasi karang lainnya yang ditemukan selama pengamatan ditampilkan pada **Tabel 12** berikut.

Tabel 12. Komposisi Jumlah Individu Biota Asosiasi Karang Lainnya yang Dijumpai di Lokasi Transplantasi di Gugus Karang Pulau Biawak

NI.a	Cuacias	Jumlah Individu (ekor)					
No	Spesies	2021	2022	2023	2024	2025	
1	Balanomorpha sp	612	874	902	902	902	
2	Calyptraea sp	124	98	104	104	104	
3	Ciprea sp	42	58	72	72	72	
4	Culcita sp	0	0	6	6	6	
5	Diadema antillarum	0	3	18	18	18	
6	Didemnum sp	2.602	2.628	2.582	2.582	2.582	
7	Harpago sp	24	34	44	44	44	
8	Pinctada sp	22	42	58	58	58	
9	Tridacna sp	0	0	30	30	30	
10	Trochus sp	32	34	54	54	54	
Jumlah Individu (ekor)		3.458	3.771	3.870	3.870	3.870	

3.1.3.3. Indeks Keanekaragaman Jenis Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Pulau Biawak

Indeks keanekaragaman jenis (H') biota biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada pengamatan Tahun 2025 adalah sebesar 1,03. Indeks keanekaragaman jenis biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Pulau Biawak selalu mengalami peningkatan setiap tahunnya. Indeks keanekaragaman jenis (H') biota asosiasi lain ditampilkan pada **Tabel 13** berikut.

Tabel 13. Indeks Keanekaragaman Biota Asosiasi Lain di Lokasi Transplantasi di Gugus Karang Pulau Biawak

Na	Spesies	Indeks Keanekaragaman Jenis (H')					
No		2021	2022	2023	2024	2025	
1	Balanomorpha sp	0,306	0,339	0,339	0,339	0,339	
2	Calyptraea sp	0,119	0,095	0,097	0,097	0,097	
3	Ciprea sp	0,054	0,064	0,074	0,074	0,074	
4	Culcita sp	-	-	0,010	0,010	0,010	
5	Diadema antillarum	-	0,006	0,025	0,025	0,025	
6	Didemnum sp	0,214	0,252	0,270	0,270	0,270	
7	Harpago sp	0,034	0,042	0,051	0,051	0,051	
8	Pinctada sp	0,032	0,050	0,063	0,063	0,063	
9	Tridacna sp	-	-	0,038	0,038	0,038	
10	Trochus sp	0,043	0,042	0,060	0,060	0,060	
Inde	eks Keanekaragaman Jenis (H')	0,80	0,89	1,03	1,03	1,03	

Keterangan:

3.1.3.4. Indeks Keseragaman dan Indeks Dominansi Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Pulau Biawak

Indeks Keseragaman (E) biota asosiasi karang lainnya di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 0,45. Indeks keseragaman biota asosiasi lain dengan nilai 0,45 tersebut menunjukkan bahwa kelimpahan individu dari berbagai spesies biota asosiasi karang lainnya di areal transplantasi di Gugus Karang Pulau Biawak cukup merata. Hal ini berarti bahwa terdapat berbagai spesies biota asosiasi karang lainnya yang hidup di komunitas tersebut, tetapi terdapat satu atau dua spesies yang memiliki kelimpahan individu yang lebih tinggi dibandingkan spesies lainnya.

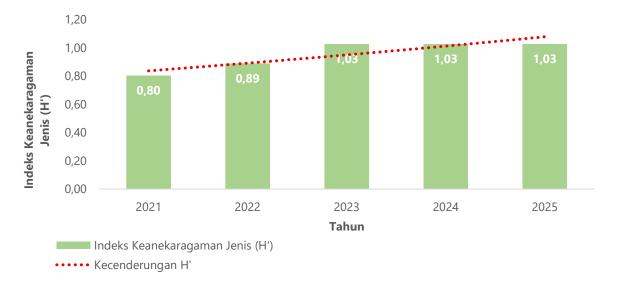
Indeks dominansi biota asosiasi karang lainnya di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 0,50. Hal ini menunjukkan bahwa ada tingkat dominansi yang cukup tinggi dari satu atau beberapa jenis biota dalam komunitas tersebut. Artinya, satu atau beberapa jenis biota tersebut memiliki jumlah individu yang lebih besar dibandingkan dengan jenis biota lainnya. Indeks keseragaman dan indeks dominansi biota asosiasi karang lainnya di areal transplantasi di Gugus Karang Pulau Biawak pada Tahun 2024 ditampilkan pada **Tabel 14** berikut.

Tabel 14. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Pulau Biawak

Indeks	Nilai	Status
Keseragaman (E)	0,45	rendah
Dominansi (C)	0,50	ada spesies yang mendominasi

3.1.3.5. Status dan Kecenderungan Biota Asosiasi Karang Lainnya pada Areal Transplantasi di Gugus Karang Pulau Biawak

3.1.3.5.2. Status dan Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Biota Asosiasi Karang Lainnya pada Areal Transplantasi di Gugus Karang Pulau Biawak


Kecenderungan kelimpahan (komposisi jumlah individu) biota asosiasi lain pada areal transplantasi di Gugus Karang Pulau Biawak dari Tahun 2021 hingga Tahun 2025 relatif mengalami peningkatan. Pada Tahun 2021 kelimpahan biota asosiasi lain adalah sebanyak 3.458 ekor kemudian relatif meningkat setiap tahunnya hingga pada Tahun 2025 kelimpahan biota asosiasi karang lainnya menjadi sebanyak 3.870 ekor. Kecenderungan kelimpahan biota asosiasi karang lainnya selama 5 (lima) periode dari Tahun 2021 hingga Tahun 2025 ditampilkan pada **Gambar 18** berikut.

Gambar 18. Kecenderungan Indeks Keanekaragaman (H') Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2021-2025

3.1.3.5.2. Status dan Kecenderungan Indeks Keanekaragaman Jenis (H') Biota Asosiasi Karang Lainnya pada Areal Transplantasi di Gugus Karang Pulau Biawak

Kecenderungan nilai indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Pulau Biawak dari Tahun 2021 hingga Tahun 2025 mengalami kenaikan. Pada Tahun 2020 indeks keanekaragaman Biota Asosiasi Karang Lainnya adalah sebesar 0,72 kemudian selalu meningkat hingga pada Tahun 2025 indeks keanekaragaman biota asosiasi lain menjadi sebesar 1,03. Kecenderungan indeks keanekaragaman biota asosiasi karang lainnya dari Tahun 2021 hingga Tahun 2025 ditampilkan pada **Gambar 19** berikut.

Gambar 19. Kecenderungan Indeks Keanekaragaman (H') Biota Asosiasi Karang Lainnya pada Areal Transplantasi di Gugus Karang Pulau Biawak pada Periode Tahun 2020-2024

3.2. OTAK JAWARA dengan menerapkan inovasi Modul Paranje di Gugus Karang Sendulang

3.2.1. Terumbu Karang Hasil Transplantasi dengan inovasi Modul Paranje

3.2.1.1 Areal Transplantasi di Gugus Karang Sendulang

Kegiatan transplantasi karang di Gugus Karang Sendulang yang telah dilaksanakan PHE ONWJ melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje. Pada Tahun 2025 kegiatan transplantasi terumbu karang dilaksanakan dengan menerapkan inovasi modul paranje, dan kombinasi *line transplan* (**Gambar 20**). Luas areal transplantasi terumbu karang pada Tahun 2025 adalah 0,06 ha.

Sumber: monitoring PPLH IPB, 2025

Gambar 20. Transplantasi Terumbu Karang dengan Metode Penempelan Fragmen pada Modul Paranje, dan *Line Transplan*, di Gugus Karang Sendulang

Secara keseluruhan, areal transplantasi yang telah dilaksanakan PHE ONWJ melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang adalah seluas 0,23 ha. Kegiatan transplantasi tersebut dilaksanakan dengan menerapkan inovasi modul paranje.

Luasan areal transplantasi program OTAK JAWARA dengan menerapkan inovasi modul paranje yang telah dilaksanakan di Gugus Karang Sendulang ditampilkan pada **Tabel 15** berikut.

Tabel 15. Areal Transplantasi program OTAK JAWARA di Gugus Karang Sendulang

Lokasi Tahun 2025		Transplantasi Tahun 2025	Transplantasi Keseluruhan	Satuan
Gugus Karang Sendulang	0,17	0,06	0,23	ha

3.2.1.2. Life Form dan Genus Karang Transplan di Gugus Karang Sendulang

3.2.1.2.1. Life Form Karang Transplan di Gugus Karang Sendulang

Karang keras pada dasarnya hewan yang hidup berkoloni. Karang yang hidupnya berkoloni memiliki variasi bentuk pertumbuhan (*life form*). Bentuk pertumbuhan karang dibagi atas karang Acropora dan karang non Acropora (Zurba, 2019). *Life form* yang ditransplan pada program transplantasi terumbu karang OTAK JAWARA dengan menerapkan inovasi modul paranje terdiri dari jenis Acropora Branching (ACB) sebanyak 1.112 fragmen dan Acropora Tabulate (ACT) sebanyak 632 fragmen.

Kedua *life form* tersebut paling banyak ditransplan karena ketersediaannya di lokasi karang alami di dekat lokasi transplan paling banyak ditemukan. Acropora merupakan salah satu kelompok karang yang sangat dominan pada suatu perairan. Genera karang Acropora umumnya memiliki bentuk morfologi koloni yang bercabang yang merupakan salah satu komponen utama pembangun terumbu karang (Thamrin, 2012). *Life form* lain yang ditransplan diantaranya adalah Acropora submassive (ACS), Coral Branching (CB), Coral Massive (CM), dan Coral Encrusting (CE). Jumlah dari masing-masing *life form* yang ditransplan selama program OTAK JAWARA dengan menerapkan inovasi modul paranje berjalan di Gugus Karang Sendulang berlangsung ditampilkan pada **Tabel 16** berikut.

Tabel 16. *Life Form* yang Ditransplan Selama Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje Berlangsung

No	Jenis Life Form (batang)	Jumlah Life Form (batang)		
1	Acropora Branching (ACB)	1.112		
2	Acropora Tabulate (ACT)	632		
3	Acropora Submassive (ACS)	33		
4	Coral Branching (CB)	28		
5	Coral Massive (CM)	29		
6	Coral Encrusting (CE)	26		
	Jumlah	1.860		

Jumlah *life form* yang telah ditransplan melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang adalah sebanyak 1.860 fragmen. Dokumentasi masing-masing jenis *life form* ditampilkan pada **Gambar 21** berikut.

Gambar 21. Life Form Karang Yang Ditransplan di Modul Paranje

3.2.1.2.2. Genus Karang Transplan di Gugus Karang Sendulang

Genus terumbu karang merupakan klasifikasi ilmiah yang digunakan untuk mengelompokkan beragam jenis terumbu karang berdasarkan karakteristik morfologi dan genetik yang serupa. Jenis genus terumbu karang yang ditransplan pada program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang adalah Acropora, Porites, dan Stylophora. Jumlah fragmen dari masing-masing genus yang ditransplan selama program berlangsung ditampilkan pada Tabel 17 berikut.

Tabel 17. Jumlah Fragmen Dari Masing-Masing Genus yang Ditransplan Selama Program Berlangsung

No	Genus	Jumlah	Satuan
1	Acropora	1.800	fragmen
2	Porites	28	fragmen
3	Stylophora	32	fragmen
	Jumlah	1.860	fragmen

Genus karang yang paling banyak ditransplan adalah Acropora. Genus Acropora adalah genus karang yang paling beragam, dan paling banyak ditemukan. Karang Acropora memiliki bentuk yang beragam, mulai dari bercabang, seperti pohon, hingga seperti pipa. Karang Acropora dikenal dengan pertumbuhan yang cepat dan cenderung mendominasi bagian atas terumbu karang (Dubinsky, 2011). Acropora yang telah ditransplantasi adalah sebanyak 1.800 fragmen.

Kecepatan pertumbuhan karang bervariasi dan tergantung bentuk koloni. Jenis karang dalam bentuk massive hanya memiliki kecepatan pertumbuhan diameter sekitar 2 cm/tahun, sementara untuk pertumbuhan ke atas hanya kurang dari 1 cm/tahun. Pertumbuhan yang relatif cepat dimiliki karang dengan genus Acropora (**Gambar 22**), dimana kelompok genus ini bisa tumbuh sekitar 5 sampai 10 cm/tahun atau lebih. Kecepatan pertumbuhan karang termasuk lambat dan sangat dipengaruhi oleh berbagai faktor lingkungan dimana karang tersebut berada (Veron, 2000).

Sumber: monitoring PPLH IPB, 2025

Gambar 22. Acropora yang Tumbuh di Modul Paranje Hasil Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang

Selain Acropora, genus karang yang ditransplan pada kegiatan transplantasi di Gugus Karang Sendulang adalah Porites dan Stylophora. Karang genus Porites cenderung memiliki bentuk bulat atau tumpul dengan struktur yang kokoh serta dengan pertumbuhan yang relatif lambat. Beberapa jenis Porites dapat membentuk karang yang sangat besar dan memberikan fondasi penting bagi ekosistem terumbu karang (Dubinsky, 2011). Jumlah Porites yang telah ditransplan pada kegiatan transplantasi terumbu karang ini adalah sebanyak 28 fragmen. Stylophora adalah genus karang yang memiliki bentuk seperti meja, karang ini biasanya berwarna putih, krem, atau coklat. Karang Stylophora dapat hidup di perairan dangkal hingga laut dalam (Spalding *et al.*, 2001). Jumlah Stylophora yang telah ditransplan pada kegiatan transplantasi terumbu karang ini adalah sebanyak

32 fragmen. Dokumentasi gambar genus Porites dan Stylophora yang ditransplan di honai di Gugus Karang Sendulang ditampilkan pada **Gambar 24** berikut.

Sumber: monitoring PPLH IPB, 2025

Gambar 23. Genus Lainnya yang Ditransplan di Modul Paranje

3.2.1.3. Media Transplantasi di Gugus Karang Sendulang


Kegiatan transplantasi terumbu karang pada Tahun 2025 di Gugus Karang Sendulang dilaksanakan dengan menggunakan metode inovasi media transplantasi paranje, dan *line transplan*. Paranje merupakan inovasi media transplantasi yang dikembangkan PHE ONWJ. Paranje didesain dengan berbagai keunggulan, diantaranya lebih kokoh sehingga tidak mudah terguling apabila terkena hempasan ombak/gelombang, paranje dibuat membulat sehingga sedimentasi di media transplantasi dapat diminimalisir, serta ikan dan organisme asosiasi lain dapat menjadikan paranje sebagai tempat berlindung karena paranje dibuat berongga. Jumlah paranje yang dijadikan media transplantasi pada kegiatan transplantasi Tahun 2025 ini adalah sebanyak 107 buah dengan jumlah fragmen yang ditempel sebanyak 428 fragmen. Pada kegiatan transplantasi dengan metode *line transplan*, tali yang menjadi media transplan yang dipergunakan sepanjang 24 meter dengan fragmen yang dipasang sebanyak 60 fragmen. Informasi detil kegiatan transplantasi terumbu karang di Gugus Karang Sendulang pada Tahun 2025 ditampilkan pada **Tabel 18** berikut.

Tabel 18. Data Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang pada Tahun 2025

No.	Metode Transplantasi	Jumlah	Jumlah Fragmen	Life Form	Genus Karang
1	Paranje	105 buah	428	Acropora Branching	
2	Line transplan	24 meter	60	(ACB)Acropora Tabulate (ACT)Coral Branching (CB)	Acropora spPorites spStylophora sp

Rangkaian kegiatan transplantasi terumbu karang dengan metode penempelan fragmen pada paranje diantaranya ialah pembuatan media paranje, mobilisasi paranje ke lokasi transplantasi, pemanenan bibit calon donor, serta penempelan bibit pada paranje. Pada kegiatan transplantasi ini, PHE ONWJ melibatkan ahli terumbu karang dari PPLH IPB, melibatkan kelompok masyarakat di Kabupaten Karawang, yaitu kelompok Pandu Alam Sendulang (PAS) serta perwakilan masyarakat

umum. Selain itu, PHE ONWJ juga melaksanakan koordinasi dengan pihak pemerintah setempat. Dokumentasi foto kegiatan transplantasi terumbu karang di Gugus Karang Sendulang ditampilkan pada **Gambar 24** berikut.

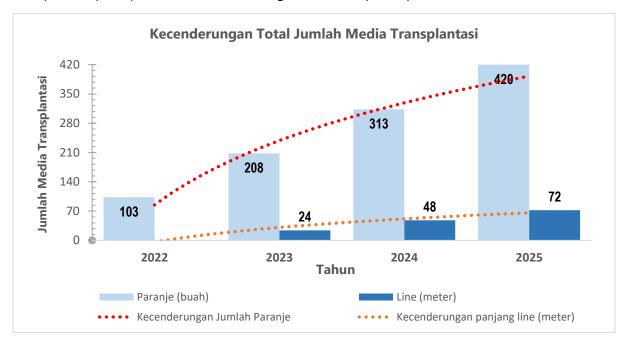
Gambar 24. Tahapan Kegiatan Transplantasi dengan Metode Penempelan Fragmen pada Paranje

3.2.1.4. Kecenderungan Hasil Transplantasi di Gugus Karang Sendulang

Upaya rehabilitasi ekosistem terumbu karang di Gugus Karang Sendulang melalui program OTAK JAWARA telah dilaksanakan PHE ONWJ sejak Tahun 2022. PHE ONWJ melaksanakan kegiatan transplantasi terumbu karang tersebut dengan menerapkan inovasi media transplantasi Paranje.

3.2.1.4.1. Kecenderungan Total Media Transplan di Areal Transplantasi di Gugus Karang Sendulang

Kegiatan transplantasi terumbu karang di Gugus Karang Sendulang dilaksanakan dengan menggunakan 3 (tiga) jenis media tranplantasi. Media tranplantasi tersebut adalah paranje yang merupakan inovasi media yang dikembangkan oleh PHE ONWJ, media transplantasi *line*, dan *coral box*. Jumlah paranje yang ditransplan pada Tahun 2022 adalah sebanyak 103 buah dan pada Tahun 2023 dan 2024 masing-masing sebanyak 105 buah, sedangkan pada Tahun 2025 jumlah paranje yang ditransplan adalah sebanyak 107 buah. Pajang media transplantasi *line* pada kegiatan transplantasi terumbu karang di Gugus Karang Sendulang pada Tahun 2023 hingga 2025 adalah sebanyak 1 buah. Jumlah *coral box* yang menjadi media transplantasi pada Tahun 2025 adalah sebanyak 1 buah. Jumlah media transplantasi selama Program OTAK JAWARA di Gugus Karang Sendulang berlangsung ditampilkan pada **Tabel 19** berikut.


Tabel 19. Jumlah Media Transplantasi pada Program OTAK JAWARA di Gugus Karang Sendulang

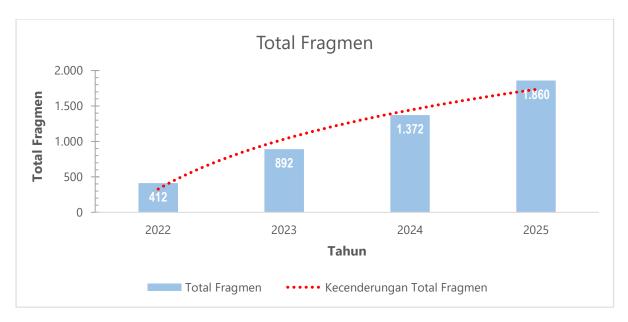
2022	103	-
2023	105	24
2024	105	24
2025	107	24
Jumlah	420	72

Keterangan:

Metode transplantasi line transplan mulai dilaksanakan pada Tahun 2022

Kecenderungan total media transplantasi yang tersebar di Gugus Karang Sendulang pada Tahun 2022 adalah sebanyak 103 paranje. Total media transplantasi tersebut kemudian meningkat pada Tahun 2025 menjadi 420 paranje, dan 72 meter *line* Kecenderungan total pada setiap jenis media transplantasi pada periode Tahun 2022 hinga 2025 ditampilkan pada **Gambar 25** berikut.

Gambar 25. Kecenderungan Total Media Transplantasi pada Program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang dari Periode Tahun 2022 – 2025


3.1.1.3.2. Kecenderungan Total Fragmen Karang pada Program Transplantasi di Gugus Karang Sendulang

Program OTAK JAWARA dengan menerapkan inovasi media transplantasi paranje di Gugus Karang Sendulang dilaksanakan dengan melakukan penempelan fragmen karang. Jumlah fragmen karang yang telah ditransplantasi selama program ini berlangsung adalah sebanyak 1.860 fragmen. Data jumlah fragmen yang ditransplan dari Tahun 2022 sampai Tahun 2025 ditampilkan pada **Tabel 20**.

Tabel 20. Jumlah Fragmen yang Ditransplan di Gugus Karang Sendulang

Labori		Catalan				
Lokasi	2022	2023	2024	2025	Jumlah	Satuan
Gugus Karang Sendulang	412	480	480	488	1.860	fragmen

Kecenderungan total fragmen yang ditransplan pada program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang pada Periode Tahun 2022 adalah 412 fragmen, total fragmen yang ditransplan kemudian meningkat pada Tahun 2025 menjadi 1.860 fragmen. Kecenderungan total fragmen yang ditransplan pada Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 26** berikut.

Gambar 26. Kecenderungan Fragmen yang ditransplan pada Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang pada Periode Tahun 2022 – 2025

3.2.1.4.1. Kecenderungan Luasan Areal Transplantasi di Gugus Karang Sendulang

Kegiatan transplantasi di Gugus Karang Paranje pada Tahun 2022 adalah seluas 0,05 ha, kemudian pada Tahun 2023 dan 2024 masing-masing seluas 0,06 ha. Luas areal transplantasi program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang Tahun 2022 hingga Tahun 2025 ditampilkan pada **Tabel 21** berikut.

Tabel 21. Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang

l alasi		Luas Areal Transplantasi (Ha)					
Lokasi	2022	2023	2024	2025	Jumlah		
Gugus Karang Sendulang	0,05	0,06	0,06	0,06	0,23		

Luasan areal transplantasi terumbu karang tersebut tersebar di Gugus Karang Sendulang seluas 0,23 ha. Kecenderungan total luasan areal transplantasi terumbu karang melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje pada Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 27** berikut.

Gambar 27. Kecenderungan Total Luas Areal Transplantasi Program OTAK JAWARA dengan Menerapkan Inovasi Modul Paranje di Gugus Karang Sendulang pada Tahun 2022 - 2025

3.2.2. Keanekaragaman Hayati Ikan Karang di Gugus Karang Sendulang

Ekosistem terumbu karang sebagai ekosistem kompleks dan produktif yang dominan tersebar di kawasan pulau-pulau kecil Indonesia berperan penting sebagai habitat bagi beragam jenis ikan, sehingga memberikan dampak pada tingginya produktivitas perikanan (ikan-ikan karang) yang bernilai ekonomis tinggi, dan juga sebagai aset yang berharga bagi kegiatan pariwisata bahari karena memiliki beraneka ragam biota laut dan panorama yang sangat indah (Nikijuluw *et al.* 2013).

Ikan karang merupakan jenis ikan yang habitat umumnya pada karang hidup. Keberadaan ikan karang sangat dipengaruhi oleh kondisi kesehatan terumbu. Terumbu karang yang sehat merupakan indikator kelimpahan ikan karang. Kebanyakan dari ikan-ikan tersebut bersembunyi di celah-celah karang sebagai tempat berlindung. Selain itu, ikan tersebut merupakan target tangkapan nelayan karena memiliki nilai ekonomi yang tinggi (Zurba, 2019).

Ikan karang adalah salah satu biota yang hidup pada ekosistem terumbu karang dan hidupnya sangat bergantung pada kondisi terumbu karang. Peranan biofisik ekosistem terumbu karang sangat beragam, diantaranya sebagai tempat tinggal, tempat berlindung, tempat mencari makan dan berkembang biak bagi beragam biota laut, termasuk didalamnya ikan karang.

3.2.2.1. Komposisi Jenis Ikan Karang di Gugus Karang Sendulang

Jumlah spesies ikan karang yang ditemukan pada Tahun 2025 di lokasi transplantasi di Gugus Karang Sendulang adalah sebanyak 17 spesies. Spesies ikan karang pada Tahun 2025 mengalami peningkatan jika dibandingkan dengan tahun tahun sebelumnya. Jenis spesies ikan karang di lokasi transplantasi Gugus Karang Sendulang ditampilkan pada **Tabel 22** dan dokumentasi beberapa jenis ikan karang yang ditemukan di lokasi transplantasi di Gugus Karang Sendulang ditampilkan pada **Gambar 28**.

Tabel 22. Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang

NI-	Sanda		Keberada	an Spesies	
No	Spesies	2022	2023	2024	2025
1	Abudefduf bengalensis	1	1	1	1
2	Caesio caerulaureus	1	-	-	1
3	Caesio cuning	-	1	1	1
4	Cephalopholis boenak	1	-	-	-
5	Chaetodon octofasciatus	-	-	1	1
6	Chelmon rostratus	-	-	1	1
7	Diploprion bifasciatum	-	1	1	1
8	Epinephelus merra	1	1	1	1
9	Halichoeres chloropterus	1	-	-	-
10	Halichoeres dussumieri	-	-	-	1
11	Halichoeres melanurus	-	1	1	1
12	Halichoeres nebulosus	-	1	1	1
13	Myripristis vittata	-	1	1	1
14	Neoglyphidodon nigroris	-	1	1	1
15	Platax boersii	-	-	1	1
16	Pomacentrus bankanensis	-	1	1	1
17	Pomacentrus brachialis	-	1	1	1
18	Pomacentrus javanicus	1	-	-	-
19	Pomacentrus simsiang	-	1	1	1
20	Scolopsis affinis	1	-	-	-
21	Scolopsis margaritifera	1	-	-	-
22	Siganus javus	1	1	1	1
	Keberadaan Spesies	9	12	15	17

Keterangan :

(1): ditemukan(-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

Sumber: monitoring PPLH IPB, 2025

Gambar 28. Beberapa Jenis Ikan Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang

3.2.2.2. Komposisi Jumlah Individu Ikan Karang di Gugus Karang Sendulang


Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi Gugus Karang Sendulang pada Tahun 2025 adalah 452 ekor. Jenis ikan karang dengan jumlah individu yang paling banyak ditemukan adalah jenis *caesio cuning* dengan jumlah individu sebanyak 130 ekor. Jenis ikan karang dengan jumlah individu paling sedikit ditemukan adalah jenis *Diploprion bifasciatum* dengan jumlah individu sebanyak 1 ekor. Jumlah individu ikan karang pada Tahun 2022 hingga Tahun 2025 selalu mengalami peningkatan. Jumlah individu dari setiap jenis yang dijumpai secara detail ditampilkan pada **Tabel 23** dan dokumentasi foto kawanan ikan yang ditemukan di lokasi transplantasi di Gugus Karang Sendulang dijasikan pada **Gambar 29**.

Tabel 23. Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Sendulang

			Jumlah Ind	ividu (ekor)	ı
No	Spesies	2022	2023	2024	2025
1	Abudefduf bengalensis	13	21	45	52
2	Caesio caerulaureus	14	0	0	46
3	Caesio cuning	0	4	38	130
4	Cephalopholis boenak	1	0	0	0
5	Chaetodon octofasciatus	0	0	6	94
6	Chelmon rostratus	0	0	3	3
7	Diploprion bifasciatum	0	5	1	1
8	Epinephelus merra	4	3	2	3
9	Halichoeres chloropterus	2	0	0	0
10	Halichoeres dussumieri	0	0	0	22
11	Halichoeres melanurus	0	7	5	5
12	Halichoeres nebulosus	0	10	5	5
13	Myripristis vittata	0	4	3	3
14	Neoglyphidodon nigroris	0	3	5	5
15	Platax boersii	0	0	10	10
16	Pomacentrus bankanensis	0	15	6	38
17	Pomacentrus brachialis	0	16	10	10
18	Pomacentrus javanicus	2	0	0	0
19	Pomacentrus simsiang	0	66	3	3
20	Scolopsis affinis	2	0	0	0
21	Scolopsis margaritifera	2	0	0	0
22	Siganus javus	7	7	64	22
	Jumlah Individu (ekor)	47	161	206	452

Keterangan:

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

Gambar 29. Kawanan ikan ekor kuning (*Caesio cuning*) yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang

3.2.2.3. Indeks Keanekaragaman Jenis Ikan Karang di Gugus Karang Sendulang

Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang pada pengamatan Tahun 2025 adalah sebesar 2,13. Walaupun kondisi ikan karang di lokasi transplantasi keanekaragamannya kecil, namun berdasarkan kecenderungan beberapa tahun terakhir, nilai indeks keanekaragaman ikan karang di lokasi transplantasi selalu mengalami peningkatan. Indeks keanekaragaman jenis (H') ikan karang ditampilkan pada **Tabel 24** berikut.

Tabel 24. Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang

Na	Species	Indeks Keanekaragaman Jenis (H')				
No	Spesies	2022	2023	2024	2025	
1	Abudefduf bengalensis	0,36	0,27	0,33	0,25	
2	Caesio caerulaureus	0,36	•	-	0,23	
3	Caesio cuning	-	0,09	0,31	0,36	
4	Cephalopholis boenak	0,08	ı	=	-	
5	Chaetodon octofasciatus	=	ı	0,10	0,33	
6	Chelmon rostratus	=	ı	0,06	0,03	
7	Diploprion bifasciatum	-	0,11	0,03	0,01	
8	Epinephelus merra	0,21	0,07	0,04	0,03	
9	Halichoeres chloropterus	0,13	ı	=	-	
10	Halichoeres dussumieri	-	•	-	0,15	
11	Halichoeres melanurus	-	0,14	0,09	0,05	
12	Halichoeres nebulosus	-	0,17	0,09	0,05	
13	Myripristis vittata	-	0,09	0,06	0,03	

No	Species	Indeks Keanekaragaman Jenis (H')				
INO	Spesies	2022	2023	2024	2025	
14	Neoglyphidodon nigroris	-	0,07	0,09	0,05	
15	Platax boersii	-	-	0,15	0,08	
16	Pomacentrus bankanensis		0,22	0,10	0,21	
17	Pomacentrus brachialis	-	0,23	0,15	0,08	
18	Pomacentrus javanicus	0,13	-	ı	-	
19	Pomacentrus simsiang	-	0,37	0,06	0,03	
20	Scolopsis affinis	0,13	-	ı	-	
21	1 Scolopsis margaritifera		-	1	-	
22	Siganus javus	0,28	0,14	0,36	0,15	
	Indeks Keanekaragaman Jenis (H')	1,83	1,97	2,03	2,13	

Keterangan:

(-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.2.2.4. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang

Indeks Keseragaman (E) ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 0,753. Nilai tersebut menunjukkan kelimpahan individu dari berbagai spesies ikan karang di areal transplantasi di Gugus Karang Sendulang tersebar secara merata. Ini berarti bahwa terdapat banyak spesies ikan karang yang hidup di komunitas tersebut.

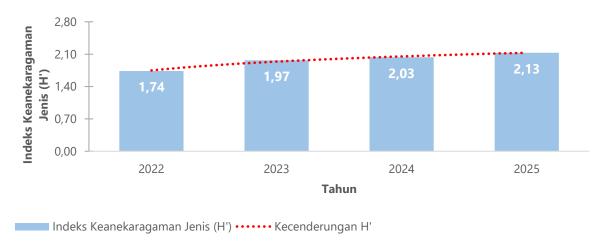
Indeks dominansi (C) ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 0,163. Hal ni menunjukkan bahwa distribusi ikan dalam ekosistem tersebut relatif merata. Tidak ada satu spesies ikan yang mendominasi sepenuhnya, dan variasi spesies ikan dalam populasi terbilang seimbang. Indeks keseragaman dan indeks dominansi ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 ditampilkan pada **Tabel 25** berikut.

Tabel 25. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang

Indeks	Nilai	Status
Keseragaman (E)	0,753	stabil/tinggi
Dominansi (C)	0,163	tidak ada spesies yang mendominasi

3.2.2.5. Status dan Kecenderungan Ikan Karang di Gugus Karang Sendulang

3.2.2.5.1. Status dan Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang


Kecenderungan kelimpahan (komposisi jumlah individu) ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2025 mengalami peningkatan dibandingkan tahun sebelumnya. Pada Tahun 2023 kelimpahan ikan karang adalah sebanyak 161 dan pada Tahun 2025 kelimpahan ikan karang meningkat menjadi 452. Kecenderungan kelimpahan ikan karang dari Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 30.**

Gambar 30. Kecenderungan Kelimpahan Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Periode Tahun 2022-2025

3.2.2.5.2. Status dan Kecenderungan indeks Keanekaragaman Jenis (H') Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang

Kecenderungan nilai indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2025 mengalami peningkatan dibandingkan tahun-tahun sebelumnya. Pada Tahun 2024 indeks keanekaragaman ikan karang sebesar 2,03 dan pada Tahun 2025 indeks keanekaragaman ikan karang meningkat menjadi 2,13. Kecenderungan indeks keanekaragaman ikan karang dari Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 31.**

Gambar 31. Kecenderungan Indeks Keanekaragaman (H') Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2022-2025

3.2.3. Keanekaragaman Hayati Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Sendulang

Keanekaragaman hayati biota asosiasi karang lainnya (makrozoobenthos) di ekosistem terumbu karang merujuk pada beragamnya organisme makroskopis yang hidup di dasar laut di sekitar terumbu karang. Makrozoobenthos mencakup berbagai jenis invertebrata laut seperti moluska, krustasea, echinodermata, dan berbagai jenis hewan lainnya. Keanekaragaman makrozoobenthos di ekosistem terumbu karang sangat penting karena organisme ini berperan dalam berbagai fungsi

ekologi, termasuk pemakan detritus, proses dekomposisi, dan interaksi dengan organisme lain dalam rantai makanan laut (Purnomo, 2008).

3.2.3.1. Komposisi Jenis Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

Jumlah spesies biota asosiasi karang lainnya yang ditemukan pada Tahun 2025 di lokasi transplantasi Gugus Karang Sendulang adalah 11 spesies. Spesies biota asosiasi karang lainnya yang ditemukan pada Tahun 2022 hingga Tahun 2025 selalu mengalami peningkatan. Jenis spesies biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Sendulang ditampilkan pada **Tabel 26** berikut.

Tabel 26. Komposisi Jumlah Spesies Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Sendulang

NI-	Spesies		Keberadaan Spesies				
No		2022	2023	2024	2025		
1	Balanomorpha sp	-	1	1	1		
2	Calyptraea sp	-	1	1	1		
3	Crassostrea sp	-	-	-	1		
4	Diadema antillarum	1	1	1	1		
5	Drupella sp	-	-	-	1		
6	Heteractis sp	1	1	1	1		
7	Thalamita sp	1	1	1	1		
8	Culcita sp	-	1	1	1		
9	Conus sp	-	1	1	1		
10	Dardanus sp	1	1	1	1		
11	Echinothrix calamaris	-	-	1	1		
12	Mespilia globulus	-	-	1	-		
	Jumlah spesies	4	8	10	11		

Keterangan:

(1): ditemukan (-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

Paranje yang juga berfungsi sebagai *artificial reef* menjadi tempat berlindung komunitas biota asosiasi karang. Dengan semakin meningkatnya keanekaragaman komunitas biota asosiasi karang di lokasi transplantasi di Gugus Karang Sendulang, hal tersebut menandakan terjadi perbaikan kualitas lingkungan di lokasi tersebut. Dokumentasi foto biota asosiasi karang yang ditemukan di lokasi transplantasi di Gugus Karang Sendulang ditampilkan pada **Gambar 32** berikut.

Sumber: monitoring PPLH IPB, 2025

Gambar 32. Biota Asosiasi Karang yang Ditemukan di Lokasi Transplantasi di Gugus Karang Sendulang

3.2.3.2. Komposisi Jumlah Individu Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

Jumlah individu biota asosiasi karang lainnya yang ditemukan pada saat pengamatan di lokasi transplantasi Gugus Karang Sendulang pada Tahun 2025 adalah 1.167 individu. Jenis biota asosiasi karang lainnya dengan jumlah individu yang paling banyak ditemukan adalah jenis *Crassostrea* sp dengan jumlah sebanyak 546 individu. Jenis biota asosiasi lain dengan jumlah individu paling sedikit ditemukan adalah jenis *Culcita* sp dengan jumlah masing-masing sebanyak 2 individu. Jumlah individu biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Sendulang pada 2025 mengalami peningkatan jika dibandingkan dengan Tahun 2024. Jumlah individu dari setiap jenis biota asosiasi karang lainnya yang ditemukan selama pengamatan ditampilkan pada **Tabel 27** berikut.

Tabel 27. Komposisi Jumlah Individu Biota Asosiasi Lain yang dijumpai di lokasi transplantasi di Gugus Karang Sendulang

NI.	Constru		Jumlah Individu				
No	Spesies	2022	2023	2024	2025		
1	Balanomorpha sp	0	412	592	4		
2	Calyptraea sp	0	134	101	194		
3	Crassostrea sp	0	0	0	546		
4	Diadema antillarum	13	195	244	374		
5	Drupella sp	0	0	0	16		
6	Heteractis sp	1	1	1	4		
7	Thalamita sp	2	3	2	8		
8	Culcita sp	0	1	1	2		
9	Conus sp	0	2	5	8		
10	Dardanus sp	2	6	23	7		
11	Echinothrix calamaris	0	0	22	4		
12	Mespilia globulus	0	0	10	0		
•	Jumlah Individu	18	754	1.001	1.167		

Keterangan :

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.2.2.3. Indeks Keanekaragaman Jenis Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

Indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Sendulang pada pengamatan Tahun 2025 adalah sebesar 1,25. Indeks keanekaragaman jenis biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Sendulang mengalami peningkatan jika dibandingkan dengan Tahun 2023. Indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di lokasi transplantasi di Gugus Karang Sendulang ditampilkan pada **Tabel 28** berikut.

Tabel 28. Indeks Keanekaragaman Biota Asosiasi Lain di Lokasi Transplantasi di Gugus Karang Sendulang

NI-	Superior	Inde	Indeks Keanekaragaman Jenis (H')				
No	Spesies	2022	2023	2024	2025		
1	Balanomorpha sp	-	0,330	0,190	0,028		
2	Calyptraea sp	-	0,307	0,269	0,349		
3	Crassostrea sp	-	-	-	0,234		
4	Diadema antillarum	0,235	0,350	0,365	0,348		
5	Drupella sp	-	-	-	0,082		
6	Heteractis sp	0,161	0,009	0,009	0,028		
7	Thalamita sp	0,244	0,022	0,016	0,048		
8	Culcita sp	-	0,009	0,009	0,016		
9	Conus sp	-	0,016	0,033	0,048		
10	Dardanus sp	0,244	0,038	0,106	0,043		
11	Echinothrix calamaris	-	-	0,103	0,028		
12	Mespilia globulus	-	-	0,057	-		
I	ndeks Keanekaragaman Jenis (H')	0,88	1,08	1,16	1,25		

Keterangan:

(-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.2.3.4. Indeks Keseragaman dan Indeks Dominansi Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

Indeks Keseragaman (E) biota asosiasi lain di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 0,52. Indeks keseragaman biota asosiasi lain dengan nilai 0,52 tersebut menunjukkan bahwa kelimpahan individu dari berbagai spesies biota asosiasi lain di areal transplantasi di Gugus Karang Sendulang cukup merata. Hal ini berarti bahwa terdapat berbagai spesies biota asosiasi lain yang hidup di komunitas tersebut, tetapi terdapat satu atau dua spesies yang memiliki kelimpahan individu yang lebih tinggi dibandingkan spesies lainnya.

Indeks dominansi ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 0,84. Hal ini menunjukkan bahwa ada tingkat dominansi yang cukup tinggi dari satu atau beberapa jenis biota dalam komunitas tersebut. Artinya, satu atau beberapa jenis biota tersebut memiliki jumlah individu yang lebih besar dibandingkan dengan jenis biota lainnya. Indeks keseragaman dan indeks dominansi biota asosiasi lain di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 ditampilkan pada **Tabel 29** berikut.

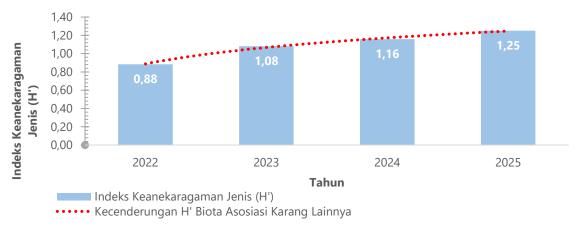
Tabel 29. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang

Indeks	Nilai	Status

Keseragaman (E)	0,50	rendah
Dominansi (C)	0,74	ada spesies yang mendominasi

3.2.3.5. Status dan Kecenderungan Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

3.2.2.5.1. Status dan Kecenderungan Kelimpahan (Komposisi Jumlah Individu) Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang


Kecenderungan kelimpahan (komposisi jumlah individu) biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2025 mengalami peningkatan jika dibandingkan dengan Tahun 2024. Pada Tahun 2024 kelimpahan biota asosiasi karang lainnya adalah sebanyak 1.001 ekor, kemudian meningkat menjadi 1.167 ekor pada Tahun 2025. Kecenderungan kelimpahan biota asosiasi karang lainnya dari Periode Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 33** berikut.

Gambar 33. Kecenderungan Kelimpahan Biota Asosiasi Karang Lainnya dari Periode Tahun 2022 hingga Tahun 2025

3.2.2.5.2. Status dan Kecenderungan indeks Keanekaragaman Jenis (H') Biota Asosiasi Karang Lainnya di Areal Transplantasi di Gugus Karang Sendulang

Kecenderungan nilai indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Sendulang pada Tahun 2025 mengalami peningkatan jika dibandingkan dengan Tahun 2024. Pada Tahun 2024 indeks keanekaramagan biota asosiasi karang lainnya sebesar 1,16 kemudian meningkat menjadi 1,25 pada Tahun 2025. Kecenderungan indeks keanekaragaman biota asosiasi karang lainnya dari Periode Tahun 2022 hingga Tahun 2025 ditampilkan pada **Gambar 34** berikut.

Gambar 34. Kecenderungan Indeks Keanekaragaman (H') Biota Asosiasi Karang Lainnya di Lokasi Transplantasi di Gugus Karang Sendulang pada Periode Tahun 2022-2025

3.3. OTAK JAWARA dengan menerapkan inovasi Coral Box di Gugus Karang Sendulang

3.3.1. Terumbu Karang Hasil Transplantasi inovasi Coral Box

3.3.1.1 Areal Transplantasi Metode Coral Box di Gugus Karang Sendulang

Kegiatan transplantasi karang di Gugus Karang Sendulang yang telah dilaksanakan PHE ONWJ melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje. Pada Tahun 2025 kegiatan transplantasi terumbu karang dilaksanakan dengan menerapkan inovasi *coral box* (**Gambar 35**). Luas areal transplantasi terumbu karang pada Tahun 2025 adalah 0,0001 ha.

Sumber: monitoring PPLH IPB, 2025

Gambar 35. Transplantasi Terumbu Karang dengan inovasi coral box di Gugus Karang Sendulang

3.3.1.2. Life Form dan Genus Karang Transplan Metode Coral Box di Gugus Karang Sendulang

Karang keras pada dasarnya hewan yang hidup berkoloni. Karang yang hidupnya berkoloni memiliki variasi bentuk pertumbuhan (*life form*). Bentuk pertumbuhan karang dibagi atas karang Acropora dan karang non Acropora (Zurba, 2019). *Life form* yang ditransplan pada program transplantasi terumbu karang OTAK JAWARA dengan menerapkan inovasi *coral box* terdiri dari jenis Acropora Branching (ACB) sebanyak 30 fragmen dan Acropora Tabulate (ACT) sebanyak 26 fragmen.

Genus terumbu karang merupakan klasifikasi ilmiah yang digunakan untuk mengelompokkan beragam jenis terumbu karang berdasarkan karakteristik morfologi dan genetik yang serupa. Jenis genus terumbu karang yang ditransplan pada program OTAK JAWARA dengan menerapkan inovasi *coral box* di Gugus Karang Sendulang adalah Acropora. Jumlah fragmen dari masingmasing *life form* dan genus yang ditransplan selama program berlangsung ditampilkan pada **Tabel 30** berikut.

Tabel 30. *Life Form* dan Genus yang Ditransplan Selama Program OTAK JAWARA dengan Menerapkan Inovasi *coral box* Berlangsung

Tahun	Life Form	Genus			
Tahun	Jenis	Jumlah (batang)	Genus	Jumlah (batang)	
2025	Acropora Branching (ACB)	60	A	112	
2025	Acropora Tabulate (ACT)	52	Acropora sp	112	
Jumlah		112		112	

Jumlah *life form* yang telah ditransplan melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang adalah sebanyak 112 fragmen. Dokumentasi masing-masing jenis *life form* ditampilkan pada **Gambar 36** berikut.

Sumber: monitoring PPLH IPB, 2025

Gambar 36. *Life Form* Karang Yang Ditransplan di Modul Paranje

3.3.1.3. Media Transplantasi Metode Coral Box di Gugus Karang Sendulang

Kegiatan transplantasi terumbu karang pada Tahun 2025 di Gugus Karang Sendulang dilaksanakan dengan menggunakan metode inovasi media *coral box. Coral box* merupakan inovasi media transplantasi yang dikembangkan PHE ONWJ. *Coral box* didesain dengan berbagai keunggulan, diantaranya lebih dapat memaksimalkan ruang vertikal sehingga jumlah fragmen yang ditransplan menjadi lebih banyak, dan fragmen yang ditransplan kedepannya dapat menjadi fragmen donor. Jumlah *coral box* yang dijadikan media transplantasi pada kegiatan transplantasi Tahun 2025 ini adalah sebanyak 1 buah dengan jumlah fragmen yang ditempel sebanyak 112 fragmen. Informasi detil kegiatan transplantasi terumbu karang di Gugus Karang Sendulang dengan menerapkan inovasi *coral box* ditampilkan pada Tahun 2025 ditampilkan pada **Tabel 31** berikut.

Tabel 31. Data Kegiatan Transplantasi Terumbu Karang di Gugus Karang Sendulang dengan Metode *Coral Box* pada Tahun 2025

No.	Metode Transplantasi	Jumlah	Jumlah Fragmen	Life Form	Genus Karang
	i ranspiantasi				

1	Coral box	1 buah	112	Acropora Branching (ACB) Acropora Tabulata (ACT)	Acropora sp
				 Acropora Tabulate (ACT) 	

Rangkaian kegiatan transplantasi terumbu karang dengan metode penempelan fragmen pada paranje diantaranya ialah pembuatan media paranje, mobilisasi paranje ke lokasi transplantasi, pemanenan bibit calon donor, serta penempelan bibit pada paranje. Pada kegiatan transplantasi ini, PHE ONWJ melibatkan ahli terumbu karang dari PPLH IPB, melibatkan kelompok masyarakat di Kabupaten Karawang, yaitu kelompok Pandu Alam Sendulang (PAS) serta perwakilan masyarakat umum. Selain itu, PHE ONWJ juga melaksanakan koordinasi dengan pihak pemerintah setempat. Dokumentasi foto kegiatan transplantasi terumbu karang di Gugus Karang Sendulang ditampilkan pada **Gambar 37** berikut.

Sumber: monitoring PPLH IPB, 2025

Gambar 37. Tahapan Kegiatan Transplantasi dengan Metode Inovasi Coral Box

3.3.2. Keanekaragaman Hayati Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang

Ekosistem terumbu karang sebagai ekosistem kompleks dan produktif yang dominan tersebar di kawasan pulau-pulau kecil Indonesia berperan penting sebagai habitat bagi beragam jenis ikan, sehingga memberikan dampak pada tingginya produktivitas perikanan (ikan-ikan karang) yang bernilai ekonomis tinggi, dan juga sebagai aset yang berharga bagi kegiatan pariwisata bahari karena memiliki beraneka ragam biota laut dan panorama yang sangat indah (Nikijuluw *et al.* 2013).

Ikan karang merupakan jenis ikan yang habitat umumnya pada karang hidup. Keberadaan ikan karang sangat dipengaruhi oleh kondisi kesehatan terumbu. Terumbu karang yang sehat merupakan indikator kelimpahan ikan karang. Kebanyakan dari ikan-ikan tersebut bersembunyi di celah-celah karang sebagai tempat berlindung. Selain itu, ikan tersebut merupakan target tangkapan nelayan karena memiliki nilai ekonomi yang tinggi (Zurba, 2019).

Ikan karang adalah salah satu biota yang hidup pada ekosistem terumbu karang dan hidupnya sangat bergantung pada kondisi terumbu karang. Peranan biofisik ekosistem terumbu karang sangat beragam, diantaranya sebagai tempat tinggal, tempat berlindung, tempat mencari makan dan berkembang biak bagi beragam biota laut, termasuk didalamnya ikan karang.

3.3.2.1. Komposisi Jenis Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang

Jumlah spesies ikan karang yang ditemukan pada Tahun 2025 di lokasi transplantasi di Gugus Karang Sendulang dengan metode *coral box* adalah sebanyak 2 spesies. Jenis spesies ikan karang di lokasi transplantasi Gugus Karang Sendulang ditampilkan pada **Tabel 32.**

Tabel 32. Komposisi Jumlah Spesies Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode *Coral Box*

No	Spesies	Keberadaan Spesies
1	Caesio cuning	1
2	Pomacentrus bankanensis	1
	Keberadaan Spesies	2

Keterangan:

(1) : ditemukan

(-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.3.2.2. Komposisi Jumlah Individu Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang

Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi Gugus Karang Sendulang dengan metode *coral box* pada Tahun 2025 adalah 5 ekor. Jenis ikan karang dengan jumlah individu yang paling banyak ditemukan adalah jenis *caesio cuning* dengan jumlah individu sebanyak 4 ekor. Jumlah individu dari setiap jenis yang dijumpai secara detail ditampilkan pada **Tabel 33**.

Tabel 33. Komposisi Jumlah Individu Ikan Karang yang Dijumpai di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode *Coral Box*

No	Spesies	Jumlah Individu (ekor)	
1	Caesio cuning	4	
2	Pomacentrus bankanensis	1	
	Jumlah Individu (ekor)	5	

Keterangan:

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.3.2.3. Indeks Keanekaragaman Jenis Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang

Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan metode *coral box* pada pengamatan Tahun 2025 adalah sebesar 0,5. Indeks keanekaragaman jenis (H') ikan karang ditampilkan pada **Tabel 34** berikut.

Tabel 34. Indeks Keanekaragaman Ikan Karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan Metode *Coral Box*

No	Spesies	Indeks Keanekaragaman Jenis (H')
1	Caesio cuning	0,18
2	Pomacentrus bankanensis	0,32
Indeks Keanekaragaman Jenis (H')		0,50

Keterangan:

(-): tidak ditemukan

Spesies yang bercetak tebal: spesies yang baru ditemukan pada Tahun 2025

3.3.2.4. Indeks Keseragaman dan Indeks Dominansi Ikan Karang pada Transplantasi Karang dengan Metode Coral Box di Gugus Karang Sendulang

Indeks Keseragaman (E) ikan karang di areal transplantasi di Gugus Karang Sendulang dengan metode *coral box* pada Tahun 2025 adalah 0,722. Nilai tersebut menunjukkan kelimpahan individu dari berbagai spesies ikan karang di areal transplantasi di Gugus Karang Sendulang tersebar secara merata. Ini berarti bahwa secara relatif terdapat banyak spesies ikan karang yang hidup di komunitas tersebut.

Indeks dominansi (C) ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 0,688, yang berarti terdapat speises yang mendominasi. Indeks keseragaman dan indeks dominansi ikan karang di areal transplantasi di Gugus Karang Sendulang pada Tahun 2025 ditampilkan pada **Tabel 35** berikut.

Tabel 35. Indeks Keseragaman dan Indeks Dominansi Ikan Karang di Areal Transplantasi di Gugus Karang Sendulang dengan Metode *Coral Box*

Indeks	Nilai	Status
Keseragaman (E)	0,722	stabil/tinggi
Dominansi (C)	0,688	ada spesies yang mendominasi

KESIMPULAN

4.1. Program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak

- Program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak pada Tahun 2025 telah ditransplan modul honai sebanyak 350 buah, rak sebanyak 6 buah, serta tali sebagai media *line transplant* sepanjang 50 meter.
- Jumlah life form yang ditransplan pada kegiatan transplantasi di kegiatan Transplantasi di Gugus Karang Pulau Biawak sebanyak 1.616 fragmen, jumlah life form Acropora Branching (ACB) yang ditransplan adalah sebanyak 822 fragmen, dan Acropora Tabulate (ACT) sebanyak 613 fragmen. Jumlah genus Acropora yang ditransplan adalah sebanyak 1.388 fragmen, Porites sebanyak 182 fragmen, dan Stylophora sebanyak 46 fragmen.

- Luas areal transplantasi yang telah dilaksanakan PHE ONW melalui program OTAK JAWARA dengan menerapkan inovasi modul honai di Gugus Karang Pulau Biawak adalah 0,05 ha.
- Jumlah spesies ikan karang yang ditemukan di lokasi transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah sebanyak 34 spesies.
- Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 789 ekor.
- Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang
 Pulau Biawak pada pengamatan Tahun 2025 adalah sebesar 3,01 dengan kategori tinggi.
- Jumlah spesies biota asosiasi karang lainnya yang ditemukan pada Tahun 2025 di lokasi transplantasi Gugus Karang Pulau Biawak adalah sebanyak 10 spesies.
- Jumlah individu biota asosiasi karang lainnya yang ditemukan pada saat pengamatan di lokasi transplantasi di Gugus Karang Pulau Biawak pada Tahun 2025 adalah 4.324 individu.
- Indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Pulau Biawak pada pengamatan Tahun 2025 adalah 1,03.

4.2. Program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang

- Program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang pada Tahun 2025 dilaksanakan dengan metode inovasi media transplantasi paranje dan line transplan. Jumlah paranje yang digunakan sebagai media transplan adalah sebanyak 107 paranje, dan tali yang digunakan sebagai media transplan sepanjang 24 meter. Total Keseluruhan paranje yang telah ditransplan adalah sebanyak 420 paranje dan tali sebagai media line transplant sepanjang 72 meter.
- Jumlah *life form* yang ditransplan pada kegiatan transplantasi di Gugus Karang Sendulang sebanyak 1.860 fragmen, jumlah *life form* Acropora Branching (ACB) yang ditransplan adalah sebanyak 1.112 fragmen, dan Acropora Tabulate (ACT) sebanyak 632 fragmen. Jumlah genus Acropora yang ditransplan adalah sebanyak 1.800 fragmen, Porites sebanyak 28 fragmen, dan Stylophora sebanyak 32 fragmen. Jumlah fragmen yang ditransplan pada kegiatan transplantasi terumbu karang Tahun 2025 di Gugus Karang Sendulang adalah 488 fragmen.
- Luas areal transplantasi yang telah dilaksanakan PHE ONW melalui program OTAK JAWARA dengan menerapkan inovasi modul paranje di Gugus Karang Sendulang adalah 0,23 ha.
- Jumlah spesies ikan karang yang ditemukan di lokasi transplantasi di Gugus Karang Sendulang adalah pada Tahun 2025 sebanyak 17 spesies.
- Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 452 ekor.
- Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang pada pengamatan Tahun 2025 adalah sebesar 2,13.
- Jumlah spesies biota asosiasi karang lainnya yang ditemukan pada Tahun 2025 di lokasi transplantasi Gugus Karang Sendulang adalah sebanyak 11 spesies.
- Jumlah individu biota asosiasi karang lainnya yang ditemukan pada saat pengamatan di lokasi transplantasi di Gugus Karang Sendulang pada Tahun 2025 adalah 1.167 individu.

• Indeks keanekaragaman jenis (H') biota asosiasi karang lainnya di Lokasi Transplantasi di Gugus Karang Sendulang pada pengamatan Tahun 2025 adalah sebesar 1,25.

4.3. Program OTAK JAWARA dengan menerapkan inovasi coral box di Gugus Karang Sendulang

- Pada Tahun 2025, PHE ONWJ melaksanakan Program OTAK JAWARA dengan menerapkan inovasi coral box di Gugus Karang Sendulang. Jumlah *coral box* yang yang ditransplan adalah sebanyak 1 buah dengan luas 1 m² (0,0001 ha).
- Jumlah *life form* yang ditransplan pada kegiatan transplantasi di Gugus Karang Sendulang dengan metode *coral box* adalah sebanyak 112 fragmen, jumlah *life form* Acropora Branching (ACB) yang ditransplan adalah sebanyak 60 fragmen, dan Acropora Tabulate (ACT) sebanyak 52 fragmen. Jumlah genus Acropora yang ditransplan adalah sebanyak 112 fragmen.
- Jumlah spesies ikan karang yang ditemukan di lokasi transplantasi di Gugus Karang Sendulang dengan metode *coral box* adalah pada Tahun 2025 sebanyak 2 spesies.
- Jumlah individu ikan karang yang ditemukan pada saat pengamatan di lokasi transplantasi di Gugus Karang Sendulang dengan metode *coral box* pada Tahun 2025 adalah 5 ekor.
- Indeks keanekaragaman jenis (H') ikan karang di Lokasi Transplantasi di Gugus Karang Sendulang dengan metode *coral box* pada pengamatan Tahun 2025 adalah sebesar 0,5.

DAFTAR PUSTAKA

- Adrim, M. & Yahmantoro. (1993) Komposisi jenis, sebaran dan kelimpahan ikan-ikan perairan karang di perairan Selat Gelasa, Belitung. Dalam: Praseno, D. P., Soeharsono, Adrim, M., Mudjiono, Suryana, I., Subardi & Ibrahim, A. (editor) Wisata Bahari Pulau Belitung. Pusat Penelitian dan Pengembangan Oseanologi LIPI. Jakarta. hal. 65 84.
- Cesar, Herman. 1996. Economic analysis of Indonesian coral reefs. The World Bank: v+97 hlm.
- Dahuri R. 1999. Kebijakan dan Strategi Pengelolaan Terumbu Karang Indonesia. Makalah disampaikan pada Lokakarya Pengelolaan dan Iptek Terumbu Karang Indonesia. Jakarta, 22-23 November 1999.
- Dubinsky Zvy, Stambler Noga, 2011. Coral Reefs: An Ecosystem in Transition. Springer.
- English, S. Wilkinson, C and Baker, V. 1997. Survey Manual for Tropical Marine Resources. Australian Institute of Marine Science. Queensland, Australia. 390pp.
- Estradivari et al. 2007. Terumbu Karang Jakarta. Laporan Pengamatan Panjang Kepulauan Seribu (2004-2005). Yayasan Terumbu Karang Indonesia (Terangi).
- Jaap, Water C. 2000. Coral reef restoration. Elsevier Ecological Engineering Vol 15: 345—364.
- Krebs, C. J. (1989). Ecological Methodology. New York: Harper & Row.
- Moberg, F. & C. Folke. 1999. Ecological goods and services of coral reef ecosystems. Ecological Economic 29: 215-233 pp.
- Moberg, F. & P. Rönnbäck. 2003. Ecosystem services the tropical seascape: interactions, substitutions and restoration. Ocean & Coastal Management 46: 27-46 pp.
- Nagelkerken, I., G. van der Velde, M.W. Gorissen, G.J. Meijer, T. Van't Hof, & C. den Hartog. 2000. Important of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuarine, Coastal and Shelf Science 51: 31-44.
- Nikijuluw Victor PH, Adrianto Luky, Bengen Dietriech G, Sondita M. Fedi A, Monintja Daniel, Siry Hendra Yusran, Nainggolan Pahala, Susanto Handoko Adi, Megawanto Rony, Koropitan Alan F, Amin Imran, Wiryawan Budy, Kinseng Rilus A, Zulbainarni Nimmi, Suryawati Siti Hajar, Purnomo Agus Heri, Djohani Rili, Subijanto Johannes. 2013. Coral Governance. IPB Press. Bogor.
- Nybakken, J.W. 1986. Biologi Laut: Suatu Pendekatan Ekologi (Penerjemah: M. Eidman; Koesoebiono; Dietriech; Hutomo; dan Sukardjo). PT. Gramedia, Jakarta.
- Odum, E. P. (1993). Dasar-dasar Ekologi. Diterjemahkan oleh Tjahjono Samingan. Edisi Ketiga. Yogyakarta: Gadjah Mada University Press

- Purnomo, S.W., T. Soegiarto, dan J.W. Purnomo. 2008. Ekosistem Terumbu Karang. Universitas Gadjah Mada Press. Yogyakarta.
- [Sudin Kelautan] 2013. Luas Tutupan Karang dan Kondisi Karang di Kepulauan Seribu Tahun 2013. Laporan Pemantaun Sudin Kelautan dan Pertanian Provinsi DKI Jakarta.
- Spalding Mark, Ravilous C, Green, E. (2001). World Atlas of Coral Reefs. The University of California Press. London.
- Supriharyono 2007. Konservasi Sumber daya Hayati di Wilayah Pesisir dan Laut Tropis. Pustaka Pelajar. Yogyakarta.
- Thamrin. 2012. Ekosistem Terumbu Karang, Hubungan antara Karang dab Zooxanthellae. UR Press. Pekanbaru.
- Tuti, M.I.Y., Giyanto, S., & R. Manogar. 2010. Pengaruh Kekeruhan Terhadap Ekosistem Terumbu Karang di Kepulauan Seribu. LIPI, Jakarta.
- Tun, K. 2006. Review of Project on Coral Reef Management Implemented by COBSEA Through the EASTAsian Seas Regional Coordinating Unit (EAS/RCU). United Nation Environment Program (UNEP).
- Veron J.E.N. 2000. Corals Of The World. Australian Institute of Marine Science and CRR Ald Pty Ltd.
- Wilkinson, Clive R. 1999. Global and local theart to coral reef fungtioning and existence: review and predictions. Marine & Freshwater Research: 867—878pp.
- Yeemin, T., M. Sutthacheep, & R. Petthongma. 2006. Coral reef restoration projects in Thailand. Ocean & Coastal Management: 562-575 pp.
- Zurba Nabil. 2019. Pengenalan Terumbu Karang Sebagai Pondasi Utama Laut Kita. Unimal Press.